ﻻ يوجد ملخص باللغة العربية
Ordinary maps satisfy topological recursion for a certain spectral curve $(x, y)$. We solve a conjecture from arXiv:1710.07851 that claims that fully simple maps, which are maps with non self-intersecting disjoint boundaries, satisfy topological recursion for the exchanged spectral curve $(y, x)$, making use of the topological recursion for ciliated maps arXiv:2105.08035.
A direct relation between the enumeration of ordinary maps and that of fully simple maps first appeared in the work of the first and last authors. The relation is via monotone Hurwitz numbers and was originally proved using Weingarten calculus for ma
We introduce the notion of fully simple maps, which are maps with non self-intersecting disjoint boundaries. In contrast, maps where such a restriction is not imposed are called ordinary. We study in detail the combinatorics of fully simple maps with
We consider the problem of enumerating d-irreducible maps, i.e. planar maps whose all cycles have length at least d, and such that any cycle of length d is the boundary of a face of degree d. We develop two approaches in parallel: the natural approac
We consider families of dynamics that can be described in terms of Perron-Frobenius operators with exponential mixing properties. For piecewise C^2 expanding interval maps we rigorously prove continuity properties of the drift J(l) and of the diffusi
In this paper, we begin with the Lehman-Walsh formula counting one-face maps and construct two involutions on pairs of permutations to obtain a new formula for the number $A(n,g)$ of one-face maps of genus $g$. Our new formula is in the form of a con