ترغب بنشر مسار تعليمي؟ اضغط هنا

Simple maps, Hurwitz numbers, and Topological Recursion

236   0   0.0 ( 0 )
 نشر من قبل Elba Garcia-Failde
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce the notion of fully simple maps, which are maps with non self-intersecting disjoint boundaries. In contrast, maps where such a restriction is not imposed are called ordinary. We study in detail the combinatorics of fully simple maps with topology of a disk or a cylinder. We show that the generating series of simple disks is given by the functional inversion of the generating series of ordinary disks. We also obtain an elegant formula for cylinders. These relations reproduce the relation between moments and free cumulants established by Collins et al. math.OA/0606431, and implement the symplectic transformation $x leftrightarrow y$ on the spectral curve in the context of topological recursion. We conjecture that the generating series of fully simple maps are computed by the topological recursion after exchange of $x$ and $y$. We propose an argument to prove this statement conditionally to a mild version of symplectic invariance for the $1$-hermitian matrix model, which is believed to be true but has not been proved yet. Our argument relies on an (unconditional) matrix model interpretation of fully simple maps, via the formal hermitian matrix model with external field. We also deduce a universal relation between generating series of fully simple maps and of ordinary maps, which involves double monotone Hurwitz numbers. In particular, (ordinary) maps without internal faces -- which are generated by the Gaussian Unitary Ensemble -- and with boundary perimeters $(lambda_1,ldots,lambda_n)$ are strictly monotone double Hurwitz numbers with ramifications $lambda$ above $infty$ and $(2,ldots,2)$ above $0$. Combining with a recent result of Dubrovin et al. math-ph/1612.02333, this implies an ELSV-like formula for these Hurwitz numbers.



قيم البحث

اقرأ أيضاً

148 - G. Borot , B. Eynard , M. Mulase 2009
We introduce a new matrix model representation for the generating function of simple Hurwitz numbers. We calculate the spectral curve of the model and the associated symplectic invariants developed in [Eynard-Orantin]. As an application, we prove the conjecture proposed by Bouchard and Marino, relating Hurwitz numbers to the spectral invariants of the Lambert curve exp(x)=y exp(-y).
79 - Elba Garcia-Failde 2020
The main objects under consideration in this thesis are called maps, a certain class of graphs embedded on surfaces. Our problems have a powerful relatively recent tool in common, the so-called topological recursion (TR) introduced by Chekhov, Eynard and Orantin. We call a map fully simple if it has non self-intersecting disjoint boundaries, and ordinary if such a restriction is not imposed. We study the combinatorial relation between fully simple and ordinary maps with the topology of a disk or a cylinder, which reproduces relations between moments and free cumulants established in the context of free probability. We propose a combinatorial interpretation of the exchange symplectic transformation of TR. We provide a matrix model interpretation for fully simple maps via the formal hermitian matrix model with external field and deduce a universal relation between generating series of fully simple and ordinary maps, which involves double monotone Hurwitz numbers. In particular, we obtain an ELSV-like formula for double $2$-orbifold strictly monotone Hurwitz numbers. We consider ordinary maps endowed with an $O(mathsf{n})$ loop model, which is a classical model in statistical physics, and determine which shapes are more likely to occur by looking at the nesting properties of the loops decorating the maps. We want to study the limiting objects when the number of vertices becomes arbitrarily large, which can be done by studying the generating series at dominant singularities. We analyze the nesting statistics in the $O(mathsf{n})$ loop model on random maps of arbitrary topologies in the presence of large and small boundaries, relying on previous results for disks and cylinders and TR for this model. We study the generating series of maps which realize a fixed nesting graph and characterize their critical behavior in the dense and dilute phases.
A direct relation between the enumeration of ordinary maps and that of fully simple maps first appeared in the work of the first and last authors. The relation is via monotone Hurwitz numbers and was originally proved using Weingarten calculus for ma trix integrals. The goal of this paper is to present two independent proofs that are purely combinatorial and generalise in various directions, such as to the setting of stuffed maps and hypermaps. The main motivation to understand the relation between ordinary and fully simple maps is the fact that it could shed light on fundamental, yet still not well-understood, problems in free probability and topological recursion.
We formulate a notion of abstract loop equations, and show that their solution is provided by a topological recursion under some assumptions, in particular the result takes a universal form. The Schwinger-Dyson equation of the one and two hermitian m atrix models, and of the O(n) model appear as special cases. We study applications to repulsive particles systems, and explain how our notion of loop equations are related to Virasoro constraints. Then, as a special case, we study in detail applications to enumeration problems in a general class of non-intersecting loop models on the random lattice of all topologies, to SU(N) Chern-Simons invariants of torus knots in the large N expansion. We also mention an application to Liouville theory on surfaces of positive genus.
Ordinary maps satisfy topological recursion for a certain spectral curve $(x, y)$. We solve a conjecture from arXiv:1710.07851 that claims that fully simple maps, which are maps with non self-intersecting disjoint boundaries, satisfy topological recu rsion for the exchanged spectral curve $(y, x)$, making use of the topological recursion for ciliated maps arXiv:2105.08035.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا