ترغب بنشر مسار تعليمي؟ اضغط هنا

Distilling Self-Knowledge From Contrastive Links to Classify Graph Nodes Without Passing Messages

163   0   0.0 ( 0 )
 نشر من قبل Yi Luo
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Nowadays, Graph Neural Networks (GNNs) following the Message Passing paradigm become the dominant way to learn on graphic data. Models in this paradigm have to spend extra space to look up adjacent nodes with adjacency matrices and extra time to aggregate multiple messages from adjacent nodes. To address this issue, we develop a method called LinkDist that distils self-knowledge from connected node pairs into a Multi-Layer Perceptron (MLP) without the need to aggregate messages. Experiment with 8 real-world datasets shows the MLP derived from LinkDist can predict the label of a node without knowing its adjacencies but achieve comparable accuracy against GNNs in the contexts of semi- and full-supervised node classification. Moreover, LinkDist benefits from its Non-Message Passing paradigm that we can also distil self-knowledge from arbitrarily sampled node pairs in a contrastive way to further boost the performance of LinkDist.



قيم البحث

اقرأ أيضاً

Graph Neural Network (GNN) has been demonstrated its effectiveness in dealing with non-Euclidean structural data. Both spatial-based and spectral-based GNNs are relying on adjacency matrix to guide message passing among neighbors during feature aggre gation. Recent works have mainly focused on powerful message passing modules, however, in this paper, we show that none of the message passing modules is necessary. Instead, we propose a pure multilayer-perceptron-based framework, Graph-MLP with the supervision signal leveraging graph structure, which is sufficient for learning discriminative node representation. In model-level, Graph-MLP only includes multi-layer perceptrons, activation function, and layer normalization. In the loss level, we design a neighboring contrastive (NContrast) loss to bridge the gap between GNNs and MLPs by utilizing the adjacency information implicitly. This design allows our model to be lighter and more robust when facing large-scale graph data and corrupted adjacency information. Extensive experiments prove that even without adjacency information in testing phase, our framework can still reach comparable and even superior performance against the state-of-the-art models in the graph node classification task.
Having access to multi-modal cues (e.g. vision and audio) empowers some cognitive tasks to be done faster compared to learning from a single modality. In this work, we propose to transfer knowledge across heterogeneous modalities, even though these d ata modalities may not be semantically correlated. Rather than directly aligning the representations of different modalities, we compose audio, image, and video representations across modalities to uncover richer multi-modal knowledge. Our main idea is to learn a compositional embedding that closes the cross-modal semantic gap and captures the task-relevant semantics, which facilitates pulling together representations across modalities by compositional contrastive learning. We establish a new, comprehensive multi-modal distillation benchmark on three video datasets: UCF101, ActivityNet, and VGGSound. Moreover, we demonstrate that our model significantly outperforms a variety of existing knowledge distillation methods in transferring audio-visual knowledge to improve video representation learning. Code is released here: https://github.com/yanbeic/CCL.
Inferring missing facts in temporal knowledge graphs (TKGs) is a fundamental and challenging task. Previous works have approached this problem by augmenting methods for static knowledge graphs to leverage time-dependent representations. However, thes e methods do not explicitly leverage multi-hop structural information and temporal facts from recent time steps to enhance their predictions. Additionally, prior work does not explicitly address the temporal sparsity and variability of entity distributions in TKGs. We propose the Temporal Message Passing (TeMP) framework to address these challenges by combining graph neural networks, temporal dynamics models, data imputation and frequency-based gating techniques. Experiments on standard TKG tasks show that our approach provides substantial gains compared to the previous state of the art, achieving a 10.7% average relative improvement in Hits@10 across three standard benchmarks. Our analysis also reveals important sources of variability both within and across TKG datasets, and we introduce several simple but strong baselines that outperform the prior state of the art in certain settings.
While contrastive approaches of self-supervised learning (SSL) learn representations by minimizing the distance between two augmented views of the same data point (positive pairs) and maximizing views from different data points (negative pairs), rece nt emph{non-contrastive} SSL (e.g., BYOL and SimSiam) show remarkable performance {it without} negative pairs, with an extra learnable predictor and a stop-gradient operation. A fundamental question arises: why do these methods not collapse into trivial representations? We answer this question via a simple theoretical study and propose a novel approach, DirectPred, that emph{directly} sets the linear predictor based on the statistics of its inputs, without gradient training. On ImageNet, it performs comparably with more complex two-layer non-linear predictors that employ BatchNorm and outperforms a linear predictor by $2.5%$ in 300-epoch training (and $5%$ in 60-epoch). DirectPred is motivated by our theoretical study of the nonlinear learning dynamics of non-contrastive SSL in simple linear networks. Our study yields conceptual insights into how non-contrastive SSL methods learn, how they avoid representational collapse, and how multiple factors, like predictor networks, stop-gradients, exponential moving averages, and weight decay all come into play. Our simple theory recapitulates the results of real-world ablation studies in both STL-10 and ImageNet. Code is released https://github.com/facebookresearch/luckmatters/tree/master/ssl.
158 - Yuzhao Chen , Yatao Bian , Xi Xiao 2020
Recently, the teacher-student knowledge distillation framework has demonstrated its potential in training Graph Neural Networks (GNNs). However, due to the difficulty of training over-parameterized GNN models, one may not easily obtain a satisfactory teacher model for distillation. Furthermore, the inefficient training process of teacher-student knowledge distillation also impedes its applications in GNN models. In this paper, we propose the first teacher-free knowledge distillation method for GNNs, termed GNN Self-Distillation (GNN-SD), that serves as a drop-in replacement of the standard training process. The method is built upon the proposed neighborhood discrepancy rate (NDR), which quantifies the non-smoothness of the embedded graph in an efficient way. Based on this metric, we propose the adaptive discrepancy retaining (ADR) regularizer to empower the transferability of knowledge that maintains high neighborhood discrepancy across GNN layers. We also summarize a generic GNN-SD framework that could be exploited to induce other distillation strategies. Experiments further prove the effectiveness and generalization of our approach, as it brings: 1) state-of-the-art GNN distillation performance with less training cost, 2) consistent and considerable performance enhancement for various popular backbones.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا