ترغب بنشر مسار تعليمي؟ اضغط هنا

Correlation Clustering in Constant Many Parallel Rounds

91   0   0.0 ( 0 )
 نشر من قبل Jakub Tarnawski
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Correlation clustering is a central topic in unsupervised learning, with many applications in ML and data mining. In correlation clustering, one receives as input a signed graph and the goal is to partition it to minimize the number of disagreements. In this work we propose a massively parallel computation (MPC) algorithm for this problem that is considerably faster than prior work. In particular, our algorithm uses machines with memory sublinear in the number of nodes in the graph and returns a constant approximation while running only for a constant number of rounds. To the best of our knowledge, our algorithm is the first that can provably approximate a clustering problem on graphs using only a constant number of MPC rounds in the sublinear memory regime. We complement our analysis with an experimental analysis of our techniques.



قيم البحث

اقرأ أيضاً

We study graph connectivity problem in MPC model. On an undirected graph with $n$ nodes and $m$ edges, $O(log n)$ round connectivity algorithms have been known for over 35 years. However, no algorithms with better complexity bounds were known. In thi s work, we give fully scalable, faster algorithms for the connectivity problem, by parameterizing the time complexity as a function of the diameter of the graph. Our main result is a $O(log D loglog_{m/n} n)$ time connectivity algorithm for diameter-$D$ graphs, using $Theta(m)$ total memory. If our algorithm can use more memory, it can terminate in fewer rounds, and there is no lower bound on the memory per processor. We extend our results to related graph problems such as spanning forest, finding a DFS sequence, exact/approximate minimum spanning forest, and bottleneck spanning forest. We also show that achieving similar bounds for reachability in directed graphs would imply faster boolean matrix multiplication algorithms. We introduce several new algorithmic ideas. We describe a general technique called double exponential speed problem size reduction which roughly means that if we can use total memory $N$ to reduce a problem from size $n$ to $n/k$, for $k=(N/n)^{Theta(1)}$ in one phase, then we can solve the problem in $O(loglog_{N/n} n)$ phases. In order to achieve this fast reduction for graph connectivity, we use a multistep algorithm. One key step is a carefully constructed truncated broadcasting scheme where each node broadcasts neighbor sets to its neighbors in a way that limits the size of the resulting neighbor sets. Another key step is random leader contraction, where we choose a smaller set of leaders than many previous works do.
We study fundamental graph problems such as graph connectivity, minimum spanning forest (MSF), and approximate maximum (weight) matching in a distributed setting. In particular, we focus on the Adaptive Massively Parallel Computation (AMPC) model, wh ich is a theoretical model that captures MapReduce-like computation augmented with a distributed hash table. We show the first AMPC algorithms for all of the studied problems that run in a constant number of rounds and use only $O(n^epsilon)$ space per machine, where $0 < epsilon < 1$. Our results improve both upon the previous results in the AMPC model, as well as the best-known results in the MPC model, which is the theoretical model underpinning many popular distributed computation frameworks, such as MapReduce, Hadoop, Beam, Pregel and Giraph. Finally, we provide an empirical comparison of the algorithms in the MPC and AMPC models in a fault-tolerant distriubted computation environment. We empirically evaluate our algorithms on a set of large real-world graphs and show that our AMPC algorithms can achieve improvements in both running time and round-complexity over optimized MPC baselines.
Clustering is a fundamental tool for analyzing large data sets. A rich body of work has been devoted to designing data-stream algorithms for the relevant optimization problems such as $k$-center, $k$-median, and $k$-means. Such algorithms need to be both time and and space efficient. In this paper, we address the problem of correlation clustering in the dynamic data stream model. The stream consists of updates to the edge weights of a graph on $n$ nodes and the goal is to find a node-partition such that the end-points of negative-weight edges are typically in different clusters whereas the end-points of positive-weight edges are typically in the same cluster. We present polynomial-time, $O(ncdot mbox{polylog}~n)$-space approximation algorithms for natural problems that arise. We first develop data structures based on linear sketches that allow the quality of a given node-partition to be measured. We then combine these data structures with convex programming and sampling techniques to solve the relevant approximation problem. Unfortunately, the standard LP and SDP formulations are not obviously solvable in $O(ncdot mbox{polylog}~n)$-space. Our work presents space-efficient algorithms for the convex programming required, as well as approaches to reduce the adaptivity of the sampling.
We show that the ratio of matched individuals to blocking pairs grows linearly with the number of propose--accept rounds executed by the Gale--Shapley algorithm for the stable marriage problem. Consequently, the participants can arrive at an almost s table matching even without full information about the problem instance; for each participant, knowing only its local neighbourhood is enough. In distributed-systems parlance, this means that if each person has only a constant number of acceptable partners, an almost stable matching emerges after a constant number of synchronous communication rounds. This holds even if ties are present in the preference lists. We apply our results to give a distributed $(2+epsilon)$-approximation algorithm for maximum-weight matching in bicoloured graphs and a centralised randomised constant-time approximation scheme for estimating the size of a stable matching.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا