ترغب بنشر مسار تعليمي؟ اضغط هنا

Numerical renormalization group-based approach to secular perturbation theory

203   0   0.0 ( 0 )
 نشر من قبل Jos\\'e Tom\\'as G\\'alvez Ghersi
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Perturbation theory is a crucial tool for many physical systems, when exact solutions are not available, or nonperturbative numerical solutions are intractable. Naive perturbation theory often fails on long timescales, leading to secularly growing solutions. These divergences have been treated with a variety of techniques, including the powerful dynamical renormalization group (DRG). Most of the existing DRG approaches rely on having analytic solutions up to some order in perturbation theory. However, sometimes the equations can only be solved numerically. We reformulate the DRG in the language of differential geometry, which allows us to apply it to numerical solutions of the background and perturbation equations. This formulation also enables us to use the DRG in systems with background parameter flows, and therefore, extend our results to any order in perturbation theory. As an example, we apply this method to calculate the soliton-like solutions of the Korteweg-de Vries equation deformed by adding a small damping term. We numerically construct DRG solutions which are valid on secular time scales, long after naive perturbation theory has broken down.



قيم البحث

اقرأ أيضاً

We show that the perturbative expansion of general gauge theories can be expressed in terms of gauge invariant variables to all orders in perturbations. In this we generalize techniques developed in gauge invariant cosmological perturbation theory, u sing Bardeen variables, by interpreting the passing over to gauge invariant fields as a homotopy transfer of the strongly homotopy Lie algebras encoding the gauge theory. This is illustrated for Yang-Mills theory, gravity on flat and cosmological backgrounds and for the massless sector of closed string theory. The perturbation lemma yields an algorithmic procedure to determine the higher corrections of the gauge invariant variables and the action in terms of these.
We introduce group field theory networks as a generalization of spin networks and of (symmetric) random tensor networks and provide a statistical computation of the Renyi entropy for a bipartite network state using the partition function of a simple interacting group field theory. The expectation value of the entanglement entropy is calculated by an expansion into stranded Feynman graphs and is shown to be captured by a Ryu- Takayanagi formula. For a simple interacting group field theory, we can prove the linear corrections, given by a polynomial perturbation of the Gaussian measure, to be negligible for a broad class of networks.
148 - Shoichi Ichinose 2013
In order to understand the dynamical mechanism of the friction phenomena, we heavily rely on the numerical analysis using various methods: molecular dynamics, Langevin equation, lattice Boltzmann method, Monte Carlo, e.t.c.. We propose a new method w hich has the following characteristic points: 1) the geometrical approach to the statistical mechanical system; 2) the continuum approach using Feynmans path integral (generalized version); 3) the holographic (higher-dimensional) approach; 4) the renormalization phenomenon takes place in order to treat the statistical fluctuation.
The effective action in quantum general relativity is strongly dependent on the gauge-fixing and parametrization of the quantum metric. As a consequence, in the effective approach to quantum gravity, there is no possibility to introduce the renormali zation-group framework in a consistent way. On the other hand, the version of effective action proposed by Vilkovisky and DeWitt does not depend on the gauge-fixing and parametrization off-shell, opening the way to explore the running of the cosmological and Newton constants as well as the coefficients of the higher-derivative terms of the total action. We argue that in the effective framework the one-loop beta functions for the zero-, two- and four-derivative terms can be regarded as exact, that means, free from corrections coming from the higher loops. In this perspective, the running describes the renormalization group flow between the present-day Hubble scale in the IR and the Planck scale in the UV.
In this paper we consider the complete momentum-independent quartic order truncation for the effective average action of a real Abelian rank 3 tensorial group field theory. This complete truncation includes non-melonic as well as double-trace interac tions. In the usual functional renormalization group perspective, the inclusion of more operators that belong to the underlying theory space corresponds to an improvement of the truncation of the effective average action. We show that the inclusion of non-melonic and double-trace operators in the truncation brings subtleties. In particular, we discuss the assignment of scaling dimensions to the non-melonic sector and how the inclusion of double-trace operators considerably changes the results for critical exponents when they are not included. We argue that this is not a particular problem of the present model by comparing the results with a pure tensor model. We discuss how these issues should be investigated in future work.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا