ﻻ يوجد ملخص باللغة العربية
In order to understand the dynamical mechanism of the friction phenomena, we heavily rely on the numerical analysis using various methods: molecular dynamics, Langevin equation, lattice Boltzmann method, Monte Carlo, e.t.c.. We propose a new method which has the following characteristic points: 1) the geometrical approach to the statistical mechanical system; 2) the continuum approach using Feynmans path integral (generalized version); 3) the holographic (higher-dimensional) approach; 4) the renormalization phenomenon takes place in order to treat the statistical fluctuation.
Much of our understanding of critical phenomena is based on the notion of Renormalization Group (RG), but the actual determination of its fixed points is usually based on approximations and truncations, and predictions of physical quantities are ofte
We consider line defects in d-dimensional Conformal Field Theories (CFTs). The ambient CFT places nontrivial constraints on Renormalization Group (RG) flows on such line defects. We show that the flow on line defects is consequently irreversible and
We consider the two dimensional disordered Bose gas which present a metallic state at low temperatures. A simple model of an interacting Bose system in a random field is propose to consider the interaction effect on the transition in the metallic state.
Quantum Renyi relative entropies provide a one-parameter family of distances between density matrices, which generalizes the relative entropy and the fidelity. We study these measures for renormalization group flows in quantum field theory. We derive
The universal critical behavior of the driven-dissipative non-equilibrium Bose-Einstein condensation transition is investigated employing the field-theoretical renormalization group method. Such criticality may be realized in broad ranges of driven o