ﻻ يوجد ملخص باللغة العربية
Owing to the hybridization of ceriums localised 4$f$ electron and conduction band composed of $d$-electrons, cerium based intermetallics exhibit various kinds of magnetic interactions. In crystals, these can result in exotic types of magnetic ordering. In this study, we report a detailed single-crystal neutron diffraction study on CePdAl$_3$ and CePtAl$_3$. We have synthesized a large crystal of CePdAl$_3$, which crystallizes in a non-centrosymmetric, orthorhombic structure with space group $Cmc2_1$, a new, distorted variant of the tetragonal BaNiSn$_3$ structure observed in other Ce$T$Al$_3$ compounds, such as CePtAl$_3$. Low-temperature diffraction measurements showed that CePdAl$_3$ orders in a collinear antiferromagnetic structure below T$_N$=5.3 (1) K, with magnetic moments pointing along the $a$-axis direction and an ordered magnetic moment $mu$=1.64(3) $mu_B$/Ce$^{3+}$. Tetragonal CePtAl$_3$ shows a modulated, cycloidal type of ordering with $vec{k}=(frac{2}{3},0,0)$, and a transition temperature T$_N$=3.2 K. Symmetry analysis allows two types of ordering, which show modulation of both amplitude and direction of magnetic moments. These results allow to conclude that in Ce$T$Al$_3$ system the orthorhombic distortion ($T$=Pd, Ag) releases some underlying magnetic frustration that results in modulated types of magnetic ordering in tetragonal compounds ($T$=Cu,Au,Pt).
Ruthenium-based perovskite systems are attractive because their Structural, electronic and magnetic properties can be systematically engineered. SrRuO$_3$/SrTiO$_3$ superlattice, with its period consisting of one unit cell each, is very sensitive to
$rm CePt_3Si$ is a novel heavy fermion superconductor, crystallising in the $rm CePt_3B$ structure as a tetragonally distorted low symmetry variant of the $rm AuCu_3$ structure type. $rm CePt_3Si$ exhibits antiferromagnetic order at $T_N approx 2.2$
We present the first-principles investigation of the structural, electronic, and magnetic properties of SrCoO$_{3-delta}$ ($delta=0, 0.25, 0.5$) to understand the multivalent nature of Co ions in SrCoO$_{3-delta}$ along the line of topotactic transit
Magnetization measurements of LaCoO$_{3}$ have been carried out up to 133 T generated with a destructive pulse magnet at a wide temperature range from 2 to 120 K. A novel magnetic transition was found at $B>100$ T and $T>T^{*}=32pm 5$ K which is char
$mathsf{Mn_{3}Sn}$ has recently attracted considerable attention as a magnetic Weyl semimetal exhibiting concomitant transport anomalies at room temperature. The topology of the electronic bands, their relation to the magnetic ground state and their