ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin state ordering of strongly correlating LaCoO$_{3}$ induced at ultrahigh magnetic fields

70   0   0.0 ( 0 )
 نشر من قبل Akihiko Ikeda
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetization measurements of LaCoO$_{3}$ have been carried out up to 133 T generated with a destructive pulse magnet at a wide temperature range from 2 to 120 K. A novel magnetic transition was found at $B>100$ T and $T>T^{*}=32pm 5$ K which is characterized by its transition field increasing with increasing temperature. At $T<T^{*}$, the previously reported transition at $Bsim65$ T was observed. Based on the obtained $B$-$T$ phase diagram and the Clausius-Clapeyron relation, the entropy of the high-field phase at 80 K is found to be smaller for about $1.5$ J K$^{-1}$ mol$^{-1}$ than that of the low-field phase. We suggest that the observed two high-field phases may originate in different spatial orders of the spin states and possibly other degrees of freedom such as orbitals. An inherent strong correlation of spin states among cobalt sites should have triggered the emergence of the ordered phases in LaCoO$_{3}$ at high magnetic fields.



قيم البحث

اقرأ أيضاً

We report a magnetostriction study of a perovskite $rm{LaCoO}_{3}$ above 100 T using our state-of-the-art strain gauge to investigate an interplay between electron correlations and spin crossover. There has been a controversy regarding whether two no vel phases in $rm{LaCoO}_{3}$ at high magnetic fields result from crystallizations or Bose-Einstein condensation during spin crossover as manifestations of localization and delocalization in spin states, respectively. We show that both phases are crystallizations rather than condensations, and the two crystallizations are different, based on the observations that the two phases exhibit as magnetostriction plateaux with distinct heights. The crystallizations of spin states have emerged manifesting the localizations and interactions in spin crossover with large and cooperative lattice changes.
Using soft x-ray absorption spectroscopy and magnetic circular dichroism at the Co-$L_{2,3}$ edge we reveal that the spin state transition in LaCoO$_{3}$ can be well described by a low-spin ground state and a triply-degenerate high-spin first excited state. From the temperature dependence of the spectral lineshapes we find that LaCoO$_{3}$ at finite temperatures is an inhomogeneous mixed-spin-state system. Crucial is that the magnetic circular dichroism signal in the paramagnetic state carries a large orbital momentum. This directly shows that the currently accepted low-/intermediate-spin picture is at variance. Parameters derived from these spectroscopies fully explain existing magnetic susceptibility, electron spin resonance and inelastic neutron data.
We studied the spin-state responses to light impurity doping in low-spin perovskite LaCoO$_{3}$ (Co^3+: d^6) through magnetization and X-ray fluorescence measurements of single-crystal LaCo$_{0.99}$$M_{0.01}$O$_{3}$ ($M$ = Cr, Mn, Fe, Ni). In the mag netization curves measured at 1.8 K, a change in the spin-state was not observed for Cr, Mn, or Fe doping but was observed for Ni doping. Strong magnetic anisotropy along the [100] easy axis was also found in the Ni-doped sample. The fluorescence measurements revealed that the valences were roughly estimated to be Cr^3+, Mn^4+, Fe^(3+delta)+, and Ni^3+. From the observed chemical trends, we propose that the chemical potential is a key factor in inducing the change of the low-spin state. By expanding a model of the ferromagnetic spin-state heptamer generated by hole doping, we discuss the emergence of highly anisotropic ferromagnetic spin-state clusters induced by low-spin Ni^3+ with Jahn-Teller activity. We also discuss applicability of the present results to mantle materials and impurity-doped pyrites with Fe (d^6).
139 - N.Matsunaga , A.Ayari , P.Monceau 2002
Magnetoresistance measurements have been carried out along the highly conducting a axis in the FISDW phase of hydrogened and deuterated (TMTSF)$_2$ClO$_4$ for various cooling rates through the anion ordering temperature. With increasing the cooling r ate, a) the high field phase boundary $beta_{rm {HI}}$, observed at 27 T in hydrogened samples for slowly cooled, is shifted towards a lower field, b) the last semimetallic SDW phase below $beta_{rm {HI}}$ is suppressed, and c) the FISDW insulating phase above $beta_{rm {HI}}$ is enhanced in both salts. The cooling rate dependence of the FISDW transition and of $beta_{rm {HI}}$ in both salts can be explained by taking into account the peculiar SDW nesting vector stabilized by the dimerized gap due to anion ordering.
X-ray magnetic circular dichroism (XMCD) at the Eu L-edge (2p->5d) in two compounds exhibiting valence fluctuation, namely EuNi2(Si0.18Ge0.82)2 and EuNi2P2, has been investigated at pulsed high magnetic fields of up to 40 T. A distinct XMCD peak corr esponding to the trivalent state (Eu3+; f6), whose ground state is nonmagnetic (J=0), was observed in addition to the main XMCD peak corresponding to the magnetic (J=7/2) divalent state (Eu2+; f7). This result indicates that the 5d electrons belonging to both valence states are magnetically polarized. It was also found that the ratio P5d(3+)/P5d(2+) between the polarization of 5d electrons (P5d) in the Eu3+ state and that of Eu2+ is ~ 0.1 in EuNi2(Si0.18Ge0.82)2 and ~ 0.3 in EuNi2P2 at magnetic fields where their macroscopic magnetization values are the same. The possible origin of the XMCD of the Eu3+ state and an explanation of the dependence of P5d(3+)/P5d(2+) on the material are discussed in terms of hybridization between the conduction electrons and the f electrons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا