ترغب بنشر مسار تعليمي؟ اضغط هنا

Photoelectron circular dichroism of O 1$s$-photoelectrons of uniaxially oriented trifluoromethyloxirane: Energy dependence and sensitivity to molecular configuration

65   0   0.0 ( 0 )
 نشر من قبل Philipp Demekhin V
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The photoelectron circular dichroism (PECD) of the O 1s-photoelectrons of trifluoromethyloxirane(TFMOx) is studied experimentally and theoretically for different photoelectron kinetic energies. The experiments were performed employing circularly polarized synchrotron radiation and coincidentelectron and fragment ion detection using Cold Target Recoil Ion Momentum Spectroscopy. The corresponding calculations were performed by means of the Single Center method within the relaxed-core Hartree-Fock approximation. We concentrate on the energy dependence of the differential PECD of uniaxially oriented TFMOx molecules, which is accessible through the employed coincident detection. We also compare results for differential PECD of TFMOx to those obtained for the equivalent fragmentation channel and similar photoelectron kinetic energy of methyloxirane (MOx), studied in our previous work. Thereby, we investigate the influence of the substitution of the methyl-group by the trifluoromethyl-group at the chiral center on the molecular chiral response. Finally, the presently obtained angular distribution parameters are compared to those available in literature.



قيم البحث

اقرأ أيضاً

The angle-resolved inner-shell photoionization of R-trifluoromethyloxirane, C3H3F3O, is studied experimentally and theoretically. Thereby, we investigate the photoelectron circular dichroism (PECD) for nearly-symmetric O 1s and F 1s electronic orbita ls, which are localized on different molecular sites. The respective dichroic $beta_{1}$ and angular distribution $beta_{2}$ parameters are measured at the photoelectron kinetic energies from 1 to 16 eV by using variably polarized synchrotron radiation and velocity map imaging spectroscopy. The present experimental results are in good agreement with the outcome of ab initio electronic structure calculations. We report a sizable chiral asymmetry $beta_{1}$ of up to about 9% for the K-shell photoionization of oxygen atom. For the individual fluorine atoms, the present calculations predict asymmetries of similar size. However, being averaged over all fluorine atoms, it drops down to about 2%, as also observed in the present experiment. Our study demonstrates a strong emitter- and site-sensitivity of PECD in the one-photon inner-shell ionization of this chiral molecule.
Photoelectron circular dichroism (PECD) is a fascinating phenomenon both from a fundamental science aspect but also due to its emerging role as a highly sensitive analytic tool for chiral recognition in the gas phase. PECD has been studied with singl e-photon as well as multi-photon ionization. The latter has been investigated in the short pulse limit with femtosecond laser pulses, where ionization can be thought of as an instantaneous process. In this contribution, we demonstrate that multiphoton PECD still can be observed when using an ultra-violet nanosecond pulse to ionize chiral showcase fenchone molecules. Compared to femtosecond ionization, the magnitude of PECD is similar, but the lifetime of intermediate molecular states imprints itself in the photoelectron spectra. Being able to use an industrial nanosecond laser to investigate PECD furthermore reduces the technical requirements to apply PECD in analytical chemistry.
Photoelectron circular dichroism (PECD) is a highly sensitive enantiospecific spectroscopy for studying chiral molecules in the gas phase using either single-photon ionization or multiphoton ionization. In the short pulse limit investigated with femt osecond lasers, resonance-enhanced multiphoton ionization (REMPI) is rather instantaneous and typically occurs simultaneously via more than one vibrational or electronic intermediate state due to limited frequency resolution. In contrast, vibrational resolution in the REMPI spectrum can be achieved using nanosecond lasers. In this work, we follow the high-resolution approach using a tunable narrow-band nanosecond laser to measure REMPI-PECD through distinct vibrational levels in the intermediate 3s and 3p Rydberg states of fenchone. We observe the PECD to be essentially independent of the vibrational level. This behaviour of the chiral sensitivity may pave the way for enantiomer specific molecular identification in multi-component mixtures: one can specifically excite a sharp, vibrationally resolved transition of a distinct molecule to distinguish different chiral species in mixtures.
We describe the results of experiments and simulations performed with the aim of extending photoelectron spectroscopy with intense laser pulses to the case of molecular compounds. Dimer frame photoelectron angular distributions generated by double io nization of N$_2$-N$_2$ and N$_2$-O$_2$ van der Waals dimers with ultrashort, intense laser pulses are measured using four-body coincidence imaging with a reaction microscope. To study the influence of the first-generated molecular ion on the ionization behavior of the remaining neutral molecule we employ a two-pulse sequence comprising of a linearly polarized and a delayed elliptically polarized laser pulse that allows distinguishing the two ionization steps. By analysis of the obtained electron momentum distributions we show that scattering of the photoelectron on the neighbouring molecular potential leads to a deformation and rotation of the photoelectron angular distribution as compared to that measured for an isolated molecule. Based on this result we demonstrate that the electron momentum space in the dimer case can be separated, allowing to extract information about the ionization pathway from the photoelectron angular distributions. Our work, when implemented with variable pulse delay, opens up the possibility of investigating light-induced electronic dynamics in molecular dimers using angularly resolved photoelectron spectroscopy with intense laser pulses.
The intermediate state dependence of photoelectron circular dichroism (PECD) in resonance-enhanced multi-photon ionization of fenchone in the gas phase is experimentally studied. By scanning the excitation wavelength from 359 to 431 nm we simultaneou sly excite up to three electronically distinct resonances. In the PECD experiment performed with a broadband femtosecond laser their respective contributions to the photoelectron spectrum can be resolved. High-resolution spectroscopy allows us to identify two of the resonances as belonging to the B- and C-bands, which involve excitation to states with 3s and 3p Rydberg character, respectively. We observe a sign change in the PECD signal depending on which electronic state is used as an intermediate. Additionally, scanning the laser wavelength reveals a decrease of PECD magnitude with increasing photoelectron energy for the 3s state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا