ﻻ يوجد ملخص باللغة العربية
The intermediate state dependence of photoelectron circular dichroism (PECD) in resonance-enhanced multi-photon ionization of fenchone in the gas phase is experimentally studied. By scanning the excitation wavelength from 359 to 431 nm we simultaneously excite up to three electronically distinct resonances. In the PECD experiment performed with a broadband femtosecond laser their respective contributions to the photoelectron spectrum can be resolved. High-resolution spectroscopy allows us to identify two of the resonances as belonging to the B- and C-bands, which involve excitation to states with 3s and 3p Rydberg character, respectively. We observe a sign change in the PECD signal depending on which electronic state is used as an intermediate. Additionally, scanning the laser wavelength reveals a decrease of PECD magnitude with increasing photoelectron energy for the 3s state.
Photoelectron circular dichroism (PECD) is a highly sensitive enantiospecific spectroscopy for studying chiral molecules in the gas phase using either single-photon ionization or multiphoton ionization. In the short pulse limit investigated with femt
We investigate few-photon ionization of lithium atoms prepared in the polarized 2$p$($m_ell=!+1$) state when subjected to femtosecond light pulses with left- or right-handed circular polarization at wavelengths between 665 nm and 920 nm. We consider
The angle-resolved inner-shell photoionization of R-trifluoromethyloxirane, C3H3F3O, is studied experimentally and theoretically. Thereby, we investigate the photoelectron circular dichroism (PECD) for nearly-symmetric O 1s and F 1s electronic orbita
Photoelectron circular dichroism (PECD) is a fascinating phenomenon both from a fundamental science aspect but also due to its emerging role as a highly sensitive analytic tool for chiral recognition in the gas phase. PECD has been studied with singl
Chirality causes symmetry breaks in a large variety of natural phenomena ranging from particle physics to biochemistry. We investigate one of the simplest conceivable chiral systems, a laser-excited, oriented, effective one-electron Li target. Prepar