ﻻ يوجد ملخص باللغة العربية
Interest point detection is one of the most fundamental and critical problems in computer vision and image processing. In this paper, we carry out a comprehensive review on image feature information (IFI) extraction techniques for interest point detection. To systematically introduce how the existing interest point detection methods extract IFI from an input image, we propose a taxonomy of the IFI extraction techniques for interest point detection. According to this taxonomy, we discuss different types of IFI extraction techniques for interest point detection. Furthermore, we identify the main unresolved issues related to the existing IFI extraction techniques for interest point detection and any interest point detection methods that have not been discussed before. The existing popular datasets and evaluation standards are provided and the performances for eighteen state-of-the-art approaches are evaluated and discussed. Moreover, future research directions on IFI extraction techniques for interest point detection are elaborated.
With the development of computer-aided diagnosis (CAD) and image scanning technology, Whole-slide Image (WSI) scanners are widely used in the field of pathological diagnosis. Therefore, WSI analysis has become the key to modern digital pathology. Sin
As an important technology in 3D mapping, autonomous driving, and robot navigation, LiDAR odometry is still a challenging task. Appropriate data structure and unsupervised deep learning are the keys to achieve an easy adjusted LiDAR odometry solution
Yelp has been one of the most popular local service search engine in US since 2004. It is powered by crowd-sourced text reviews and photo reviews. Restaurant customers and business owners upload photo images to Yelp, including reviewing or advertisin
Image feature extraction and matching is a fundamental but computation intensive task in machine vision. This paper proposes a novel FPGA-based embedded system to accelerate feature extraction and matching. It implements SURF feature point detection
Pedestrian detection methods have been significantly improved with the development of deep convolutional neural networks. Nevertheless, robustly detecting pedestrians with a large variant on sizes and with occlusions remains a challenging problem. In