ترغب بنشر مسار تعليمي؟ اضغط هنا

Augmented Tensor Decomposition with Stochastic Optimization

427   0   0.0 ( 0 )
 نشر من قبل Chaoqi Yang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Tensor decompositions are powerful tools for dimensionality reduction and feature interpretation of multidimensional data such as signals. Existing tensor decomposition objectives (e.g., Frobenius norm) are designed for fitting raw data under statistical assumptions, which may not align with downstream classification tasks. Also, real-world tensor data are usually high-ordered and have large dimensions with millions or billions of entries. Thus, it is expensive to decompose the whole tensor with traditional algorithms. In practice, raw tensor data also contains redundant information while data augmentation techniques may be used to smooth out noise in samples. This paper addresses the above challenges by proposing augmented tensor decomposition (ATD), which effectively incorporates data augmentations to boost downstream classification. To reduce the memory footprint of the decomposition, we propose a stochastic algorithm that updates the factor matrices in a batch fashion. We evaluate ATD on multiple signal datasets. It shows comparable or better performance (e.g., up to 15% in accuracy) over self-supervised and autoencoder baselines with less than 5% of model parameters, achieves 0.6% ~ 1.3% accuracy gain over other tensor-based baselines, and reduces the memory footprint by 9X when compared to standard tensor decomposition algorithms.



قيم البحث

اقرأ أيضاً

Tensor decomposition is a well-known tool for multiway data analysis. This work proposes using stochastic gradients for efficient generalized canonical polyadic (GCP) tensor decomposition of large-scale tensors. GCP tensor decomposition is a recently proposed version of tensor decomposition that allows for a variety of loss functions such as Bernoulli loss for binary data or Huber loss for robust estimation. The stochastic gradient is formed from randomly sampled elements of the tensor and is efficient because it can be computed using the sparse matricized-tensor-times-Khatri-Rao product (MTTKRP) tensor kernel. For dense tensors, we simply use uniform sampling. For sparse tensors, we propose two types of stratified sampling that give precedence to sampling nonzeros. Numerical results demonstrate the advantages of the proposed approach and its scalability to large-scale problems.
We discuss structured Schatten norms for tensor decomposition that includes two recently proposed norms (overlapped and latent) for convex-optimization-based tensor decomposition, and connect tensor decomposition with wider literature on structured s parsity. Based on the properties of the structured Schatten norms, we mathematically analyze the performance of latent approach for tensor decomposition, which was empirically found to perform better than the overlapped approach in some settings. We show theoretically that this is indeed the case. In particular, when the unknown true tensor is low-rank in a specific mode, this approach performs as good as knowing the mode with the smallest rank. Along the way, we show a novel duality result for structures Schatten norms, establish the consistency, and discuss the identifiability of this approach. We confirm through numerical simulations that our theoretical prediction can precisely predict the scaling behavior of the mean squared error.
This paper is concerned with improving the empirical convergence speed of block-coordinate descent algorithms for approximate nonnegative tensor factorization (NTF). We propose an extrapolation strategy in-between block updates, referred to as heuris tic extrapolation with restarts (HER). HER significantly accelerates the empirical convergence speed of most existing block-coordinate algorithms for dense NTF, in particular for challenging computational scenarios, while requiring a negligible additional computational budget.
Random projections reduce the dimension of a set of vectors while preserving structural information, such as distances between vectors in the set. This paper proposes a novel use of row-product random matrices in random projection, where we call it T ensor Random Projection (TRP). It requires substantially less memory than existing dimension reduction maps. The TRP map is formed as the Khatri-Rao product of several smaller random projections, and is compatible with any base random projection including sparse maps, which enable dimension reduction with very low query cost and no floating point operations. We also develop a reduced variance extension. We provide a theoretical analysis of the bias and variance of the TRP, and a non-asymptotic error analysis for a TRP composed of two smaller maps. Experiments on both synthetic and MNIST data show that our method performs as well as conventional methods with substantially less storage.
133 - Yu Guan , Shuyu Dong , P.-A. Absil 2020
We consider a low-rank tensor completion (LRTC) problem which aims to recover a tensor from incomplete observations. LRTC plays an important role in many applications such as signal processing, computer vision, machine learning, and neuroscience. A w idely used approach is to combine the tensor completion data fitting term with a regularizer based on a convex relaxation of the multilinear ranks of the tensor. For the data fitting function, we model the tensor variable by using the Canonical Polyadic (CP) decomposition and for the low-rank promoting regularization function, we consider a graph Laplacian-based function which exploits correlations between the rows of the matrix unfoldings. For solving our LRTC model, we propose an efficient alternating minimization algorithm. Furthermore, based on the Kurdyka-{L}ojasiewicz property, we show that the sequence generated by the proposed algorithm globally converges to a critical point of the objective function. Besides, an alternating direction method of multipliers algorithm is also developed for the LRTC model. Extensive numerical experiments on synthetic and real data indicate that the proposed algorithms are effective and efficient.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا