ﻻ يوجد ملخص باللغة العربية
In recent years the ubiquitous deployment of AI has posed great concerns in regards to algorithmic bias, discrimination, and fairness. Compared to traditional forms of bias or discrimination caused by humans, algorithmic bias generated by AI is more abstract and unintuitive therefore more difficult to explain and mitigate. A clear gap exists in the current literature on evaluating and mitigating bias in pruned neural networks. In this work, we strive to tackle the challenging issues of evaluating, mitigating, and explaining induced bias in pruned neural networks. Our paper makes three contributions. First, we propose two simple yet effective metrics, Combined Error Variance (CEV) and Symmetric Distance Error (SDE), to quantitatively evaluate the induced bias prevention quality of pruned models. Second, we demonstrate that knowledge distillation can mitigate induced bias in pruned neural networks, even with unbalanced datasets. Third, we reveal that model similarity has strong correlations with pruning induced bias, which provides a powerful method to explain why bias occurs in pruned neural networks. Our code is available at https://github.com/codestar12/pruning-distilation-bias
Building reliable machine learning systems requires that we correctly understand their level of confidence. Calibration measures the degree of accuracy in a models confidence and most research in calibration focuses on techniques to improve an empiri
Knowledge distillation has become one of the most important model compression techniques by distilling knowledge from larger teacher networks to smaller student ones. Although great success has been achieved by prior distillation methods via delicate
There has been rapidly growing interest in the use of algorithms in hiring, especially as a means to address or mitigate bias. Yet, to date, little is known about how these methods are used in practice. How are algorithmic assessments built, validate
Knowledge Distillation (KD) is a popular technique to transfer knowledge from a teacher model or ensemble to a student model. Its success is generally attributed to the privileged information on similarities/consistency between the class distribution
Prior work has shown Convolutional Neural Networks (CNNs) trained on surrogate Computer Aided Design (CAD) models are able to detect and classify real-world artefacts from photographs. The applications of which support twinning of digital and physica