ﻻ يوجد ملخص باللغة العربية
The elastic property of quantum critical quasicrystal (QC) Yb$_{15}$Al$_{34}$Au$_{51}$ is analyzed theoretically on the basis of the approximant crystal (AC) Yb$_{14}$Al$_{35}$Au$_{51}$. By constructing the realistic effective model in the AC, we evaluate the 4f-5d Coulomb repulsion at Yb as $U_{fd}approx 1.46$ eV realizing the quantum critical point (QCP) of the Yb-valence transition. The RPA analysis of the QCP shows that softening in elastic constants occurs remarkably for bulk modulus and longitudinal mode at low temperatures. Possible relevance of these results to the QC as well as the pressure-tuned AC is discussed.
Quantum criticality has been considered to be specific to crystalline materials such as heavy fermions. Very recently, however, the Tsai-type quasicrystal Au51Al34Yb15 has been reported to show unusual quantum critical behavior. To obtain a deeper un
We report on ac magnetic susceptibility measurements under pressure of the Au-Al-Yb alloy, a crystalline approximant to the icosahedral quasicrystal that shows unconventional quantum criticality. In describing the susceptibility as $chi(T)^{-1} - chi
The mechanism of not diverging Gr{u}neisen parameter in the quantum critical heavy-fermion quasicrystal (QC) Yb$_{15}$Al$_{34}$Au$_{51}$ is analyzed. We construct the formalism for calculating the specific heat $C_V(T)$, the thermal-expansion coeffic
Quasicrystals are metallic alloys that possess long-range, aperiodic structures with diffraction symmetries forbidden to conventional crystals. Since the discovery of quasicrystals by Schechtman et al. at 1984 (ref. 1), there has been considerable pr
We report the synthesis of a single-phase sample of the superconducting crystalline approximant Au64.0Ge22.0Yb14.0 and present a structure model refined by Rietveld analysis for X-ray diffraction data.