ﻻ يوجد ملخص باللغة العربية
Corneal endothelial cell segmentation plays a vital role inquantifying clinical indicators such as cell density, coefficient of variation,and hexagonality. However, the corneal endotheliums uneven reflectionand the subjects tremor and movement cause blurred cell edges in theimage, which is difficult to segment, and need more details and contextinformation to release this problem. Due to the limited receptive field oflocal convolution and continuous downsampling, the existing deep learn-ing segmentation methods cannot make full use of global context andmiss many details. This paper proposes a Multi-Branch hybrid Trans-former Network (MBT-Net) based on the transformer and body-edgebranch. Firstly, We use the convolutional block to focus on local tex-ture feature extraction and establish long-range dependencies over space,channel, and layer by the transformer and residual connection. Besides,We use the body-edge branch to promote local consistency and to provideedge position information. On the self-collected dataset TM-EM3000 andpublic Alisarine dataset, compared with other State-Of-The-Art (SOTA)methods, the proposed method achieves an improvement.
Transformer architecture has emerged to be successful in a number of natural language processing tasks. However, its applications to medical vision remain largely unexplored. In this study, we present UTNet, a simple yet powerful hybrid Transformer a
Corneal thickness (pachymetry) maps can be used to monitor restoration of corneal endothelial function, for example after Descemets membrane endothelial keratoplasty (DMEK). Automated delineation of the corneal interfaces in anterior segment optical
While the multi-branch architecture is one of the key ingredients to the success of computer vision tasks, it has not been well investigated in natural language processing, especially sequence learning tasks. In this work, we propose a simple yet eff
Image segmentation is often ambiguous at the level of individual image patches and requires contextual information to reach label consensus. In this paper we introduce Segmenter, a transformer model for semantic segmentation. In contrast to convoluti
Semantic segmentation is a challenging problem due to difficulties in modeling context in complex scenes and class confusions along boundaries. Most literature either focuses on context modeling or boundary refinement, which is less generalizable in