ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-branch Attentive Transformer

113   0   0.0 ( 0 )
 نشر من قبل Yingce Xia
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

While the multi-branch architecture is one of the key ingredients to the success of computer vision tasks, it has not been well investigated in natural language processing, especially sequence learning tasks. In this work, we propose a simple yet effective variant of Transformer called multi-branch attentive Transformer (briefly, MAT), where the attention layer is the average of multiple branches and each branch is an independent multi-head attention layer. We leverage two training techniques to regularize the training: drop-branch, which randomly drops individual branches during training, and proximal initialization, which uses a pre-trained Transformer model to initialize multiple branches. Experiments on machine translation, code generation and natural language understanding demonstrate that such a simple variant of Transformer brings significant improvements. Our code is available at url{https://github.com/HA-Transformer}.



قيم البحث

اقرأ أيضاً

260 - Yekun Chai , Shuo Jin , Xinwen Hou 2020
Self-attention mechanisms have made striking state-of-the-art (SOTA) progress in various sequence learning tasks, standing on the multi-headed dot product attention by attending to all the global contexts at different locations. Through a pseudo info rmation highway, we introduce a gated component self-dependency units (SDU) that incorporates LSTM-styled gating units to replenish internal semantic importance within the multi-dimensional latent space of individual representations. The subsidiary content-based SDU gates allow for the information flow of modulated latent embeddings through skipped connections, leading to a clear margin of convergence speed with gradient descent algorithms. We may unveil the role of gating mechanism to aid in the context-based Transformer modules, with hypothesizing that SDU gates, especially on shallow layers, could push it faster to step towards suboptimal points during the optimization process.
To disclose overlapped multiple relations from a sentence still keeps challenging. Most current works in terms of neural models inconveniently assuming that each sentence is explicitly mapped to a relation label, cannot handle multiple relations prop erly as the overlapped features of the relations are either ignored or very difficult to identify. To tackle with the new issue, we propose a novel approach for multi-labeled relation extraction with capsule network which acts considerably better than current convolutional or recurrent net in identifying the highly overlapped relations within an individual sentence. To better cluster the features and precisely extract the relations, we further devise attention-based routing algorithm and sliding-margin loss function, and embed them into our capsule network. The experimental results show that the proposed approach can indeed extract the highly overlapped features and achieve significant performance improvement for relation extraction comparing to the state-of-the-art works.
We investigate multi-scale transformer language models that learn representations of text at multiple scales, and present three different architectures that have an inductive bias to handle the hierarchical nature of language. Experiments on large-sc ale language modeling benchmarks empirically demonstrate favorable likelihood vs memory footprint trade-offs, e.g. we show that it is possible to train a hierarchical variant with 30 layers that has 23% smaller memory footprint and better perplexity, compared to a vanilla transformer with less than half the number of layers, on the Toronto BookCorpus. We analyze the advantages of learned representations at multiple scales in terms of memory footprint, compute time, and perplexity, which are particularly appealing given the quadratic scaling of transformers run time and memory usage with respect to sequence length.
Corneal endothelial cell segmentation plays a vital role inquantifying clinical indicators such as cell density, coefficient of variation,and hexagonality. However, the corneal endotheliums uneven reflectionand the subjects tremor and movement cause blurred cell edges in theimage, which is difficult to segment, and need more details and contextinformation to release this problem. Due to the limited receptive field oflocal convolution and continuous downsampling, the existing deep learn-ing segmentation methods cannot make full use of global context andmiss many details. This paper proposes a Multi-Branch hybrid Trans-former Network (MBT-Net) based on the transformer and body-edgebranch. Firstly, We use the convolutional block to focus on local tex-ture feature extraction and establish long-range dependencies over space,channel, and layer by the transformer and residual connection. Besides,We use the body-edge branch to promote local consistency and to provideedge position information. On the self-collected dataset TM-EM3000 andpublic Alisarine dataset, compared with other State-Of-The-Art (SOTA)methods, the proposed method achieves an improvement.
In contrast with previous approaches where information flows only towards deeper layers of a stack, we consider a multi-pass transformer (MPT) architecture in which earlier layers are allowed to process information in light of the output of later lay ers. To maintain a directed acyclic graph structure, the encoder stack of a transformer is repeated along a new multi-pass dimension, keeping the parameters tied, and information is allowed to proceed unidirectionally both towards deeper layers within an encoder stack and towards any layer of subsequent stacks. We consider both soft (i.e., continuous) and hard (i.e., discrete) connections between parallel encoder stacks, relying on a neural architecture search to find the best connection pattern in the hard case. We perform an extensive ablation study of the proposed MPT architecture and compare it with other state-of-the-art transformer architectures. Surprisingly, Base Transformer equipped with MPT can surpass the performance of Large Transformer on the challenging machine translation En-De and En-Fr datasets. In the hard connection case, the optimal connection pattern found for En-De also leads to improved performance for En-Fr.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا