ترغب بنشر مسار تعليمي؟ اضغط هنا

A Comprehensive Survey on Graph Anomaly Detection with Deep Learning

89   0   0.0 ( 0 )
 نشر من قبل Xiaoxiao Ma
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Anomalies represent rare observations (e.g., data records or events) that deviate significantly from others. Over several decades, the burst of information has attracted more attention on anomalies because of their significance in a wide range of disciplines Anomaly detection, which aims to identify rare observations, is among the most vital tasks in the world, and has shown its power in preventing detrimental events, such as financial fraud, network intrusion, and social spam. The detection task is typically solved by identifying outlying data points in the feature space and inherently overlooks the relational information in real-world data. Graphs have been prevalently used to represent the structural information, which raises the graph anomaly detection problem - identifying anomalous graph objects (i.e., nodes, edges and sub-graphs) in a single graph, or anomalous graphs in a database/set of graphs. However, conventional anomaly detection techniques cannot tackle this problem well because of the complexity of graph data. For the advent of deep learning, graph anomaly detection with deep learning has received a growing attention recently. In this survey, we aim to provide a systematic and comprehensive review of the contemporary deep learning techniques for graph anomaly detection. We compile open-sourced implementations, public datasets, and commonly-used evaluation metrics to provide affluent resources for future studies. More importantly, we highlight twelve extensive future research directions according to our survey results covering unsolved and emerging research problems and real-world applications. With this survey, our goal is to create a one-stop-shop that provides a unified understanding of the problem categories and existing approaches, publicly available hands-on resources, and high-impact open challenges for graph anomaly detection using deep learning.

قيم البحث

اقرأ أيضاً

124 - Xing Su , Shan Xue , Fanzhen Liu 2021
A community reveals the features and connections of its members that are different from those in other communities in a network. Detecting communities is of great significance in network analysis. Despite the classical spectral clustering and statist ical inference methods, we notice a significant development of deep learning techniques for community detection in recent years with their advantages in handling high dimensional network data. Hence, a comprehensive overview of community detections latest progress through deep learning is timely to both academics and practitioners. This survey devises and proposes a new taxonomy covering different categories of the state-of-the-art methods, including deep learning-based models upon deep neural networks, deep nonnegative matrix factorization and deep sparse filtering. The main category, i.e., deep neural networks, is further divided into convolutional networks, graph attention networks, generative adversarial networks and autoencoders. The survey also summarizes the popular benchmark data sets, model evaluation metrics, and open-source implementations to address experimentation settings. We then discuss the practical applications of community detection in various domains and point to implementation scenarios. Finally, we outline future directions by suggesting challenging topics in this fast-growing deep learning field.
Anomaly detection in videos is a problem that has been studied for more than a decade. This area has piqued the interest of researchers due to its wide applicability. Because of this, there has been a wide array of approaches that have been proposed throughout the years and these approaches range from statistical-based approaches to machine learning-based approaches. Numerous surveys have already been conducted on this area but this paper focuses on providing an overview on the recent advances in the field of anomaly detection using Deep Learning. Deep Learning has been applied successfully in many fields of artificial intelligence such as computer vision, natural language processing and more. This survey, however, focuses on how Deep Learning has improved and provided more insights to the area of video anomaly detection. This paper provides a categorization of the different Deep Learning approaches with respect to their objectives. Additionally, it also discusses the commonly used datasets along with the common evaluation metrics. Afterwards, a discussion synthesizing all of the recent approaches is made to provide direction and possible areas for future research.
Transfer learning aims at improving the performance of target learners on target domains by transferring the knowledge contained in different but related source domains. In this way, the dependence on a large number of target domain data can be reduc ed for constructing target learners. Due to the wide application prospects, transfer learning has become a popular and promising area in machine learning. Although there are already some valuable and impressive surveys on transfer learning, these surveys introduce approaches in a relatively isolated way and lack the recent advances in transfer learning. Due to the rapid expansion of the transfer learning area, it is both necessary and challenging to comprehensively review the relevant studies. This survey attempts to connect and systematize the existing transfer learning researches, as well as to summarize and interpret the mechanisms and the strategies of transfer learning in a comprehensive way, which may help readers have a better understanding of the current research status and ideas. Unlike previous surveys, this survey paper reviews more than forty representative transfer learning approaches, especially homogeneous transfer learning approaches, from the perspectives of data and model. The applications of transfer learning are also briefly introduced. In order to show the performance of different transfer learning models, over twenty representative transfer learning models are used for experiments. The models are performed on three different datasets, i.e., Amazon Reviews, Reuters-21578, and Office-31. And the experimental results demonstrate the importance of selecting appropriate transfer learning models for different applications in practice.
In many domains where data are represented as graphs, learning a similarity metric among graphs is considered a key problem, which can further facilitate various learning tasks, such as classification, clustering, and similarity search. Recently, the re has been an increasing interest in deep graph similarity learning, where the key idea is to learn a deep learning model that maps input graphs to a target space such that the distance in the target space approximates the structural distance in the input space. Here, we provide a comprehensive review of the existing literature of deep graph similarity learning. We propose a systematic taxonomy for the methods and applications. Finally, we discuss the challenges and future directions for this problem.
91 - Daniel Hsu 2017
In this paper, we use variational recurrent neural network to investigate the anomaly detection problem on graph time series. The temporal correlation is modeled by the combination of recurrent neural network (RNN) and variational inference (VI), whi le the spatial information is captured by the graph convolutional network. In order to incorporate external factors, we use feature extractor to augment the transition of latent variables, which can learn the influence of external factors. With the target function as accumulative ELBO, it is easy to extend this model to on-line method. The experimental study on traffic flow data shows the detection capability of the proposed method.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا