ترغب بنشر مسار تعليمي؟ اضغط هنا

Espresso: A Fast End-to-end Neural Speech Recognition Toolkit

191   0   0.0 ( 0 )
 نشر من قبل Yiming Wang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present Espresso, an open-source, modular, extensible end-to-end neural automatic speech recognition (ASR) toolkit based on the deep learning library PyTorch and the popular neural machine translation toolkit fairseq. Espresso supports distributed training across GPUs and computing nodes, and features various decoding approaches commonly employed in ASR, including look-ahead word-based language model fusion, for which a fast, parallelized decoder is implemented. Espresso achieves state-of-the-art ASR performance on the WSJ, LibriSpeech, and Switchboard data sets among other end-to-end systems without data augmentation, and is 4--11x faster for decoding than similar systems (e.g. ESPnet).



قيم البحث

اقرأ أيضاً

While significant improvements have been made in recent years in terms of end-to-end automatic speech recognition (ASR) performance, such improvements were obtained through the use of very large neural networks, unfit for embedded use on edge devices . That being said, in this paper, we work on simplifying and compressing Transformer-based encoder-decoder architectures for the end-to-end ASR task. We empirically introduce a more compact Speech-Transformer by investigating the impact of discarding particular modules on the performance of the model. Moreover, we evaluate reducing the numerical precision of our networks weights and activations while maintaining the performance of the full-precision model. Our experiments show that we can reduce the number of parameters of the full-precision model and then further compress the model 4x by fully quantizing to 8-bit fixed point precision.
Automatic Speech Recognition (ASR) using multiple microphone arrays has achieved great success in the far-field robustness. Taking advantage of all the information that each array shares and contributes is crucial in this task. Motivated by the advan ces of joint Connectionist Temporal Classification (CTC)/attention mechanism in the End-to-End (E2E) ASR, a stream attention-based multi-array framework is proposed in this work. Microphone arrays, acting as information streams, are activated by separate encoders and decoded under the instruction of both CTC and attention networks. In terms of attention, a hierarchical structure is adopted. On top of the regular attention networks, stream attention is introduced to steer the decoder toward the most informative encoders. Experiments have been conducted on AMI and DIRHA multi-array corpora using the encoder-decoder architecture. Compared with the best single-array results, the proposed framework has achieved relative Word Error Rates (WERs) reduction of 3.7% and 9.7% in the two datasets, respectively, which is better than conventional strategies as well.
This paper proposes serialized output training (SOT), a novel framework for multi-speaker overlapped speech recognition based on an attention-based encoder-decoder approach. Instead of having multiple output layers as with the permutation invariant t raining (PIT), SOT uses a model with only one output layer that generates the transcriptions of multiple speakers one after another. The attention and decoder modules take care of producing multiple transcriptions from overlapped speech. SOT has two advantages over PIT: (1) no limitation in the maximum number of speakers, and (2) an ability to model the dependencies among outputs for different speakers. We also propose a simple trick that allows SOT to be executed in $O(S)$, where $S$ is the number of the speakers in the training sample, by using the start times of the constituent source utterances. Experimental results on LibriSpeech corpus show that the SOT models can transcribe overlapped speech with variable numbers of speakers significantly better than PIT-based models. We also show that the SOT models can accurately count the number of speakers in the input audio.
We present a novel conversational-context aware end-to-end speech recognizer based on a gated neural network that incorporates conversational-context/word/speech embeddings. Unlike conventional speech recognition models, our model learns longer conve rsational-context information that spans across sentences and is consequently better at recognizing long conversations. Specifically, we propose to use the text-based external word and/or sentence embeddings (i.e., fastText, BERT) within an end-to-end framework, yielding a significant improvement in word error rate with better conversational-context representation. We evaluated the models on the Switchboard conversational speech corpus and show that our model outperforms standard end-to-end speech recognition models.
Previous work on end-to-end translation from speech has primarily used frame-level features as speech representations, which creates longer, sparser sequences than text. We show that a naive method to create compressed phoneme-like speech representat ions is far more effective and efficient for translation than traditional frame-level speech features. Specifically, we generate phoneme labels for speech frames and average consecutive frames with the same label to create shorter, higher-level source sequences for translation. We see improvements of up to 5 BLEU on both our high and low resource language pairs, with a reduction in training time of 60%. Our improvements hold across multiple data sizes and two language pairs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا