ﻻ يوجد ملخص باللغة العربية
Submodular optimization has numerous applications such as crowdsourcing and viral marketing. In this paper, we study the fundamental problem of non-negative submodular function maximization subject to a $k$-system constraint, which generalizes many other important constraints in submodular optimization such as cardinality constraint, matroid constraint, and $k$-extendible system constraint. The existing approaches for this problem achieve the best-known approximation ratio of $k+2sqrt{k+2}+3$ (for a general submodular function) based on deterministic algorithmic frameworks. We propose several randomized algorithms that improve upon the state-of-the-art algorithms in terms of approximation ratio and time complexity, both under the non-adaptive setting and the adaptive setting. The empirical performance of our algorithms is extensively evaluated in several applications related to data mining and social computing, and the experimental results demonstrate the superiorities of our algorithms in terms of both utility and efficiency.
In this paper we study the fundamental problems of maximizing a continuous non-monotone submodular function over the hypercube, both with and without coordinate-wise concavity. This family of optimization problems has several applications in machine
We consider the revenue maximization problem in social advertising, where a social network platform owner needs to select seed users for a group of advertisers, each with a payment budget, such that the total expected revenue that the owner gains fro
We study the problem of maximizing a non-monotone submodular function subject to a cardinality constraint in the streaming model. Our main contribution is a single-pass (semi-)streaming algorithm that uses roughly $O(k / varepsilon^2)$ memory, where
We consider fast algorithms for monotone submodular maximization subject to a matroid constraint. We assume that the matroid is given as input in an explicit form, and the goal is to obtain the best possible running times for important matroids. We d
We study the recently introduced idea of worst-case sensitivity for monotone submodular maximization with cardinality constraint $k$, which captures the degree to which the output argument changes on deletion of an element in the input. We find that