ترغب بنشر مسار تعليمي؟ اضغط هنا

Sensitivity Analysis of Submodular Function Maximization

70   0   0.0 ( 0 )
 نشر من قبل Conor McMeel
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the recently introduced idea of worst-case sensitivity for monotone submodular maximization with cardinality constraint $k$, which captures the degree to which the output argument changes on deletion of an element in the input. We find that for large classes of algorithms that non-trivial sensitivity of $o(k)$ is not possible, even with bounded curvature, and that these results also hold in the distributed framework. However, we also show that in the regime $k = Omega(n)$ that we can obtain $O(1)$ sensitivity for sufficiently low curvature.


قيم البحث

اقرأ أيضاً

Continuous submodular functions are a category of generally non-convex/non-concave functions with a wide spectrum of applications. The celebrated property of this class of functions - continuous submodularity - enables both exact minimization and app roximate maximization in poly. time. Continuous submodularity is obtained by generalizing the notion of submodularity from discrete domains to continuous domains. It intuitively captures a repulsive effect amongst different dimensions of the defined multivariate function. In this paper, we systematically study continuous submodularity and a class of non-convex optimization problems: continuous submodular function maximization. We start by a thorough characterization of the class of continuous submodular functions, and show that continuous submodularity is equivalent to a weak version of the diminishing returns (DR) property. Thus we also derive a subclass of continuous submodular functions, termed continuous DR-submodular functions, which enjoys the full DR property. Then we present operations that preserve continuous (DR-)submodularity, thus yielding general rules for composing new submodular functions. We establish intriguing properties for the problem of constrained DR-submodular maximization, such as the local-global relation. We identify several applications of continuous submodular optimization, ranging from influence maximization, MAP inference for DPPs to provable mean field inference. For these applications, continuous submodularity formalizes valuable domain knowledge relevant for optimizing this class of objectives. We present inapproximability results and provable algorithms for two problem settings: constrained monotone DR-submodular maximization and constrained non-monotone DR-submodular maximization. Finally, we extensively evaluate the effectiveness of the proposed algorithms.
We present a polynomial-time online algorithm for maximizing the conditional value at risk (CVaR) of a monotone stochastic submodular function. Given $T$ i.i.d. samples from an underlying distribution arriving online, our algorithm produces a sequenc e of solutions that converges to a ($1-1/e$)-approximate solution with a convergence rate of $O(T^{-1/4})$ for monotone continuous DR-submodular functions. Compared with previous offline algorithms, which require $Omega(T)$ space, our online algorithm only requires $O(sqrt{T})$ space. We extend our online algorithm to portfolio optimization for monotone submodular set functions under a matroid constraint. Experiments conducted on real-world datasets demonstrate that our algorithm can rapidly achieve CVaRs that are comparable to those obtained by existing offline algorithms.
In this paper we study the fundamental problems of maximizing a continuous non-monotone submodular function over the hypercube, both with and without coordinate-wise concavity. This family of optimization problems has several applications in machine learning, economics, and communication systems. Our main result is the first $frac{1}{2}$-approximation algorithm for continuous submodular function maximization; this approximation factor of $frac{1}{2}$ is the best possible for algorithms that only query the objective function at polynomially many points. For the special case of DR-submodular maximization, i.e. when the submodular functions is also coordinate wise concave along all coordinates, we provide a different $frac{1}{2}$-approximation algorithm that runs in quasilinear time. Both of these results improve upon prior work [Bian et al, 2017, Soma and Yoshida, 2017]. Our first algorithm uses novel ideas such as reducing the guaranteed approximation problem to analyzing a zero-sum game for each coordinate, and incorporates the geometry of this zero-sum game to fix the value at this coordinate. Our second algorithm exploits coordinate-wise concavity to identify a monotone equilibrium condition sufficient for getting the required approximation guarantee, and hunts for the equilibrium point using binary search. We further run experiments to verify the performance of our proposed algorithms in related machine learning applications.
Submodular function minimization (SFM) is a fundamental discrete optimization problem which generalizes many well known problems, has applications in various fields, and can be solved in polynomial time. Owing to applications in computer vision and m achine learning, fast SFM algorithms are highly desirable. The current fastest algorithms [Lee, Sidford, Wong, FOCS 2015] run in $O(n^{2}log nMcdottextrm{EO} +n^{3}log^{O(1)}nM)$ time and $O(n^{3}log^{2}ncdot textrm{EO} +n^{4}log^{O(1)}n$) time respectively, where $M$ is the largest absolute value of the function (assuming the range is integers) and $textrm{EO}$ is the time taken to evaluate the function on any set. Although the best known lower bound on the query complexity is only $Omega(n)$, the current shortest non-deterministic proof certifying the optimum value of a function requires $Theta(n^{2})$ function evaluations. The main contribution of this paper are subquadratic SFM algorithms. For integer-valued submodular functions, we give an SFM algorithm which runs in $O(nM^{3}log ncdottextrm{EO})$ time giving the first nearly linear time algorithm in any known regime. For real-valued submodular functions with range in $[-1,1]$, we give an algorithm which in $tilde{O}(n^{5/3}cdottextrm{EO}/varepsilon^{2})$ time returns an $varepsilon$-additive approximate solution. At the heart of it, our algorithms are projected stochastic subgradient descent methods on the Lovasz extension of submodular functions where we crucially exploit submodularity and data structures to obtain fast, i.e. sublinear time subgradient updates. . The latter is crucial for beating the $n^{2}$ bound as we show that algorithms which access only subgradients of the Lovasz extension, and these include the theoretically best algorithms mentioned above, must make $Omega(n)$ subgradient calls (even for functions whose range is ${-1,0,1}$).
94 - Alina Ene , Huy L. Nguyen 2019
In this work, we give a new parallel algorithm for the problem of maximizing a non-monotone diminishing returns submodular function subject to a cardinality constraint. For any desired accuracy $epsilon$, our algorithm achieves a $1/e - epsilon$ appr oximation using $O(log{n} log(1/epsilon) / epsilon^3)$ parallel rounds of function evaluations. The approximation guarantee nearly matches the best approximation guarantee known for the problem in the sequential setting and the number of parallel rounds is nearly-optimal for any constant $epsilon$. Previous algorithms achieve worse approximation guarantees using $Omega(log^2{n})$ parallel rounds. Our experimental evaluation suggests that our algorithm obtains solutions whose objective value nearly matches the value obtained by the state of the art sequential algorithms, and it outperforms previous parallel algorithms in number of parallel rounds, iterations, and solution quality.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا