ترغب بنشر مسار تعليمي؟ اضغط هنا

Laboratory verification of electron-scale reconnection regions modulated by a three-dimensional instability

112   0   0.0 ( 0 )
 نشر من قبل Samuel Greess
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. Greess




اسأل ChatGPT حول البحث

During magnetic reconnection in collisionless space plasma, the electron fluid decouples from the magnetic field within narrow current layers, and theoretical models for this process can be distinguished in terms of their predicted current layer widths. From theory, the off-diagonal stress in the electron pressure tensor is related to thermal non-circular orbit motion of electrons around the magnetic field lines. This stress becomes significant when the width of the reconnecting current layer approaches the small characteristic length scale of the electron motion. To aid in situ spacecraft and numerical investigations of reconnection, the structure of the electron diffusion region is here investigated using the Terrestrial Reconnection EXperiment (TREX). In agreement with the closely matched kinetic simulations, laboratory observations reveal the presence of electron-scale current layer widths. Although the layers are modulated by a current-driven instability, 3D simulations demonstrate that it is the off-diagonal stress that is responsible for breaking the frozen-in condition of the electron fluid.



قيم البحث

اقرأ أيضاً

We report for the first time the intrinsically three-dimensional (3D) geometry of the magnetic reconnection process induced by ballooning instability in a generalized Harris sheet. The spatial distribution and structure of the quasi-separatrix layers , as well as their temporal emergence and evolution, indicate that the associated magnetic reconnection can only occur in a 3D geometry, which is irreducible to that of any two-dimensional reconnection process. Such a finding provides a new perspective to the long-standing controversy over the substorm onset problem, and elucidates the combined roles of reconnection and ballooning instabilities. It also connects to the universal presence of 3D reconnection processes previously discovered in various natural and laboratory plasmas.
191 - C. J. Xiao , X. G. Wang , Z. Y. Pu 2007
Detection of a separator line that connects magnetic nulls and the determination of the dynamics and plasma environment of such a structure can improve our understanding of the three-dimensional (3D) magnetic reconnection process. However, this type of field and particle configuration has not been directly observed in space plasmas. Here we report the identification of a pair of nulls, the null-null line that connects them, and associated fans and spines in the magnetotail of Earth using data from the four Cluster spacecraft. With di and de designating the ion and electron inertial lengths, respectively, the separation between the nulls is found to be ~0.7di and an associated oscillation is identified as a lower hybrid wave with wavelength ~ de. This in situ evidence of the full 3D reconnection geometry and associated dynamics provides an important step toward to establishing an observational framework of 3D reconnection.
We report in situ observations of an electron diffusion region (EDR) and adjacent separatrix region. We observe significant magnetic field oscillations near the lower hybrid frequency which propagate perpendicularly to the reconnection plane. We also find that the strong electron-scale gradients close to the EDR exhibit significant oscillations at a similar frequency. Such oscillations are not expected for a crossing of a steady 2D EDR, and can be explained by a complex motion of the reconnection plane induced by current sheet kinking propagating in the out-of-reconnection-plane direction. Thus all three spatial dimensions have to be taken into account to explain the observed perturbed EDR crossing.
Fluid models that approximate kinetic effects have received attention recently in the modelling of large scale plasmas such as planetary magnetospheres. In three-dimensional reconnection, both reconnection itself and current sheet instabilities need to be represented appropriately. We show that a heat flux closure based on pressure gradients enables a ten moment fluid model to capture key properties of the lower-hybrid drift instability (LHDI) within a reconnection simulation. Characteristics of the instability are examined with kinetic and fluid continuum models, and its role in the three-dimensional reconnection simulation is analysed. The saturation level of the electromagnetic LHDI is higher than expected which leads to strong kinking of the current sheet. Therefore, the magnitude of the initial perturbation has significant impact on the resulting turbulence.
A new regime of fast magnetic reconnection with an out-of-plane (guide) magnetic field is reported in which the key role is played by an electron pressure anisotropy described by the Chew-Goldberger-Low gyrotropic equations of state in the generalize d Ohms law, which even dominates the Hall term. A description of the physical cause of this behavior is provided and two-dimensional fluid simulations are used to confirm the results. The electron pressure anisotropy causes the out-of-plane magnetic field to develop a quadrupole structure of opposite polarity to the Hall magnetic field and gives rise to dispersive waves. In addition to being important for understanding what causes reconnection to be fast, this mechanism should dominate in plasmas with low plasma beta and a high in-plane plasma beta with electron temperature comparable to or larger than ion temperature, so it could be relevant in the solar wind and some tokamaks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا