ترغب بنشر مسار تعليمي؟ اضغط هنا

Fluid Simulations of Three-Dimensional Reconnection that Capture the Lower-Hybrid Drift Instability

81   0   0.0 ( 0 )
 نشر من قبل Rainer Grauer
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Fluid models that approximate kinetic effects have received attention recently in the modelling of large scale plasmas such as planetary magnetospheres. In three-dimensional reconnection, both reconnection itself and current sheet instabilities need to be represented appropriately. We show that a heat flux closure based on pressure gradients enables a ten moment fluid model to capture key properties of the lower-hybrid drift instability (LHDI) within a reconnection simulation. Characteristics of the instability are examined with kinetic and fluid continuum models, and its role in the three-dimensional reconnection simulation is analysed. The saturation level of the electromagnetic LHDI is higher than expected which leads to strong kinking of the current sheet. Therefore, the magnitude of the initial perturbation has significant impact on the resulting turbulence.



قيم البحث

اقرأ أيضاً

Microscopic instability and macroscopic flow pattern resulting from colliding plasmas are studied analytically in support of laboratory experiments. The plasma flows are assumed to stream radially from two separate centers. In a quasi-planar (2D) geo metry, they may arise from an Ohmic explosion of two parallel wires, but similar configurations emerge from other outflows, e.g., colliding winds in binary star systems. One objective of this paper is to characterize the flow instabilities developing near the flow stagnation line. An exact solution for the Buneman-type dispersion equation is obtained without conventional simplifications. The unstable wave characteristics are key to anomalous resistivity that determines the reconnection rate of opposite magnetic fields transported with each flow toward the stagnation zone. The second objective of the paper is to calculate the stream function of the plasma shocked upon collision. We addressed this task by mapping the flow region to a hodograph plane and solving a Dirichlet problem for the stream function. By providing the instability growth rate, responsible for anomalous transport coefficients, and the overall flow configuration, these studies lay the ground for the next step. From there, we will examine the field reconnection scenarios and emerging mesoscopic structures, such as radial striata observed in the experiments.
Density inhomogeneities are ubiquitous in space and astrophysical plasmas, in particular at contact boundaries between different media. They often correspond to regions that exhibits strong dynamics on a wide range of spatial and temporal scales. Ind eed, density inhomogeneities are a source of free energy that can drive various instabilities such as, for instance, the lower-hybrid-drift instability which in turn transfers energy to the particles through wave-particle interactions and eventually heat the plasma. We aim at quantifying the efficiency of the lower-hybrid-drift instability to accelerate and/or heat electrons parallel to the ambient magnetic field. We combine two complementary methods: full-kinetic and quasilinear models. We report self-consistent evidence of electron acceleration driven by the development of the lower-hybrid-drift instability using 3D-3V full-kinetic numerical simulations. The efficiency of the observed acceleration cannot be explained by standard quasilinear theory. For this reason, we develop an extended quasilinear model able to quantitatively predict the interaction between lower-hybrid fluctuations and electrons on long time scales, now in agreement with full-kinetic simulations results. Finally, we apply this new, extended quasilinear model to a specific inhomogeneous space plasma boundary: the magnetopause of Mercury, and we discuss our quantitative predictions of electron acceleration in support to future BepiColombo observations.
111 - S. Greess 2021
During magnetic reconnection in collisionless space plasma, the electron fluid decouples from the magnetic field within narrow current layers, and theoretical models for this process can be distinguished in terms of their predicted current layer widt hs. From theory, the off-diagonal stress in the electron pressure tensor is related to thermal non-circular orbit motion of electrons around the magnetic field lines. This stress becomes significant when the width of the reconnecting current layer approaches the small characteristic length scale of the electron motion. To aid in situ spacecraft and numerical investigations of reconnection, the structure of the electron diffusion region is here investigated using the Terrestrial Reconnection EXperiment (TREX). In agreement with the closely matched kinetic simulations, laboratory observations reveal the presence of electron-scale current layer widths. Although the layers are modulated by a current-driven instability, 3D simulations demonstrate that it is the off-diagonal stress that is responsible for breaking the frozen-in condition of the electron fluid.
We report for the first time the intrinsically three-dimensional (3D) geometry of the magnetic reconnection process induced by ballooning instability in a generalized Harris sheet. The spatial distribution and structure of the quasi-separatrix layers , as well as their temporal emergence and evolution, indicate that the associated magnetic reconnection can only occur in a 3D geometry, which is irreducible to that of any two-dimensional reconnection process. Such a finding provides a new perspective to the long-standing controversy over the substorm onset problem, and elucidates the combined roles of reconnection and ballooning instabilities. It also connects to the universal presence of 3D reconnection processes previously discovered in various natural and laboratory plasmas.
In the merging-compression method of plasma start-up, two flux-ropes with parallel toroidal current are formed around in-vessel poloidal field coils, before merging to form a spherical tokamak plasma. This start-up method, used in the Mega-Ampere Sph erical Tokamak (MAST), is studied as a high Lundquist number and low plasma-beta magnetic reconnection experiment. In this paper, 2D fluid simulations are presented of this merging process in order to understand the underlying physics, and better interpret the experimental data. These simulations examine the individual and combined effects of tight-aspect ratio geometry and two-fluid physics on the merging. The ideal self-driven flux-rope dynamics are coupled to the diffusion layer physics, resulting in a large range of phenomena. For resistive MHD simulations, the flux-ropes enter the sloshing regime for normalised resistivity eta < 1E-5. In Hall-MHD three regimes are found for the qualitative behaviour of the current sheet, depending on the ratio of the current sheet width to the ion-sound radius. These are a stable collisional regime, an open X-point regime, and an intermediate regime that is highly unstable to tearing-type instabilities. In toroidal axisymmetric geometry, the final state after merging is a MAST-like spherical tokamak with nested flux-surfaces. It is also shown that the evolution of simulated 1D radial density profiles closely resembles the Thomson scattering electron density measurements in MAST. An intuitive explanation for the origin of the measured density structures is proposed, based upon the results of the toroidal Hall-MHD simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا