ﻻ يوجد ملخص باللغة العربية
The problem of simultaneous column and row subset selection is addressed in this paper. The column space and row space of a matrix are spanned by its left and right singular vectors, respectively. However, the singular vectors are not within actual columns/rows of the matrix. In this paper, an iterative approach is proposed to capture the most structural information of columns/rows via selecting a subset of actual columns/rows. This algorithm is referred to as two-way spectrum pursuit (TWSP) which provides us with an accurate solution for the CUR matrix decomposition. TWSP is applicable in a wide range of applications since it enjoys a linear complexity w.r.t. number of original columns/rows. We demonstrated the application of TWSP for joint channel and sensor selection in cognitive radio networks, informative users and contents detection, and efficient supervised data reduction.
This paper presents an unsupervised learning approach for simultaneous sample and feature selection, which is in contrast to existing works which mainly tackle these two problems separately. In fact the two tasks are often interleaved with each other
We give the first single-pass streaming algorithm for Column Subset Selection with respect to the entrywise $ell_p$-norm with $1 leq p < 2$. We study the $ell_p$ norm loss since it is often considered more robust to noise than the standard Frobenius
We study the problem of tensor robust principal component analysis (TRPCA), which aims to separate an underlying low-multilinear-rank tensor and a sparse outlier tensor from their sum. In this work, we propose a fast non-convex algorithm, coined Robu
This paper considers the use of Robust PCA in a CUR decomposition framework and applications thereof. Our main algorithms produce a robust version of column-row factorizations of matrices $mathbf{D}=mathbf{L}+mathbf{S}$ where $mathbf{L}$ is low-rank
Greed is good. However, the tighter you squeeze, the less you have. In this paper, a less greedy algorithm for sparse signal reconstruction in compressive sensing, named orthogonal matching pursuit with thresholding is studied. Using the global 2-coh