ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-dimensional superconductivity at heterostructure of Mott insulating titanium sesquioxide and polar semiconductor

141   0   0.0 ( 0 )
 نشر من قبل Wei Li
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Heterointerfaces with symmetry breaking and strong interfacial coupling could give rise to the enormous exotic quantum phenomena. Here, we report on the experimental observation of intriguing two-dimensional superconductivity with superconducting transition temperature ($T_c$) of 3.8 K at heterostructure of Mott insulator Ti$_2$O$_3$ and polar semiconductor GaN revealed by the electrical transport and magnetization measurements. Furthermore, at the verge of superconductivity we find a wide range of temperature independent resistance associated with vanishing Hall resistance, demonstrating the emergence of quantum metallic-like state with the Bose-metal scenario of the metallic phase. By tuning the thickness of Ti$_2$O$_3$ films, the emergence of quantum metallic-like state accompanies with the appearance of superconductivity as decreasing in temperature, implying that the two-dimensional superconductivity is evolved from the quantum metallic-like state driven by the cooperative effects of the electron correlation and the interfacial coupling between Ti$_2$O$_3$ and polar GaN. These findings provide a new platform for the study of intriguing two-dimensional superconductivity with a delicate interplay of the electron correlation and the interfacial coupling at the heterostructures, and unveil the clues of the mechanism of unconventional superconductivity.

قيم البحث

اقرأ أيضاً

Superconductivity at the interface of a heterostructure confined to nanometer-sized scale offers unique opportunities to study the exotic physics of two-dimensional superconductivity. The realization of superconductivity at the interface between a to pological insulator and an iron-chalcogenide compound is highly attractive for exploring several recent theoretical predictions involving these two new classes of materials. Here, we report transport measurements on a Bi2Te3/FeTe heterostructure fabricated via van der Waals epitaxy, which demonstrate superconductivity at the interface induced by the Bi2Te3 epilayer with thickness even down to one quintuple layer. The two-dimensional nature of the observed superconductivity with the highest transition temperature around 12 K was verified by the existence of a Berezinsky-Kosterlitz-Thouless transition and the diverging ratio of in-plane to out-plane upper critical field on approaching the superconducting transition temperature. With the combination of interface superconductivity and Dirac surface states of Bi2Te3, the heterostructure studied in this work provides a novel platform for realizing Majorana fermions.
We report an NMR and magnetometry study on the expanded intercalated fulleride Cs_3C_60 in both its A15 and face centered cubic structures. NMR allowed us to evidence that both exhibit a first-order Mott transition to a superconducting (SC) state, oc curing at distinct critical pressures p_c and temperatures T_c. Though the ground state magnetism of the Mott phases differs, their high $T$ paramagnetic and SC properties are found similar, and the phase diagrams versus unit volume per C_60 are superimposed. Thus, as expected for a strongly correlated system, the inter-ball distance is the relvevant parameter driving the electronic behavior and quantum transitions of these systems.
89 - T. Cuk , D.A. Zocco , H. Eisaki 2010
We have performed several high pressure electrical resistance experiments on Bi1.98Sr2.06Y0.68Cu2O8, an insulating parent compound of the high-Tc Bi2212 family of copper oxide superconductors. We find a resistive anomaly, a downturn at low temperatur e, that onsets with applied pressure in the 20-40 kbar range. Through both resistance and magnetoresistance measurements, we identify this anomaly as a signature of induced superconductivity. Resistance to higher pressures decreases Tc, giving a maximum of 10 K. The higher pressure measurements exhibit a strong sensitivity to the hydrostaticity of the pressure environment. We make comparisons to the pressure induced superconductivity now ubiquitous in the iron arsenides.
Interplay of Pomeranchuk instability (spontaneous symmetry breaking of the Fermi surface) and d-wave superconductivity is studied for the repulsive Hubbard model on the square lattice with the dynamical mean field theory combined with the fluctuation exchange approximation (FLEX+DMFT). We show that the four-fold symmetric Fermi surface becomes unstable against a spontaneous distortion into two-fold near the van Hove filling, where the symmetry of superconductivity coexisting with the Pomeranchuk distorted Fermi surface is modified from the d-wave pairing to (d+s)-wave. By systematically shifting the position of van Hove filling with varied second- and third-neighbor hoppings, we find that the transition temperature $T_{rm c}^{rm PI}$ of Pomeranchuk instability is more sensitively affected by the position of van Hove filling than the superconducting $T_{rm c}^{rm SC}$. This implies that the filling region for strong Pomeranchuk instability and that for strong superconducting fluctuations can be separated, and Pomeranchuk instability can appear even if the peak of $T_c^{rm PI}$ is lower than the peak of $T_c^{rm SC}$. An interesting observation is that the Fermi surface distortion can enhance the superconducting $T_{rm c}^{rm SC}$ in the overdoped regime, which is explained with a perturbation picture for small distortions.
SU(4) dynamical symmetry is shown to imply a no-double-occupancy constraint on the minimal symmetry description of antiferromagnetism and d-wave superconductivity. This implies a maximum doping fraction of 1/4 for cuprates and provides a microscopic critique of the projected SO(5) model. We propose that SU(4) superconductors are representative of a class of compounds that we term non-abelian superconductors. We further suggest that non-abelian superconductors may exist having SU(4) symmetry and therefore cuprate-like dynamics, but without d-wave hybridization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا