ترغب بنشر مسار تعليمي؟ اضغط هنا

Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency

82   0   0.0 ( 0 )
 نشر من قبل Haiping Wu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent works have advanced the performance of self-supervised representation learning by a large margin. The core among these methods is intra-image invariance learning. Two different transformations of one image instance are considered as a positive sample pair, where various tasks are designed to learn invariant representations by comparing the pair. Analogically, for video data, representations of frames from the same video are trained to be closer than frames from other videos, i.e. intra-video invariance. However, cross-video relation has barely been explored for visual representation learning. Unlike intra-video invariance, ground-truth labels of cross-video relation is usually unavailable without human labors. In this paper, we propose a novel contrastive learning method which explores the cross-video relation by using cycle-consistency for general image representation learning. This allows to collect positive sample pairs across different video instances, which we hypothesize will lead to higher-level semantics. We validate our method by transferring our image representation to multiple downstream tasks including visual object tracking, image classification, and action recognition. We show significant improvement over state-of-the-art contrastive learning methods. Project page is available at https://happywu.github.io/cycle_contrast_video.



قيم البحث

اقرأ أيضاً

Learning to synthesize high frame rate videos via interpolation requires large quantities of high frame rate training videos, which, however, are scarce, especially at high resolutions. Here, we propose unsupervised techniques to synthesize high fram e rate videos directly from low frame rate videos using cycle consistency. For a triplet of consecutive frames, we optimize models to minimize the discrepancy between the center frame and its cycle reconstruction, obtained by interpolating back from interpolated intermediate frames. This simple unsupervised constraint alone achieves results comparable with supervision using the ground truth intermediate frames. We further introduce a pseudo supervised loss term that enforces the interpolated frames to be consistent with predictions of a pre-trained interpolation model. The pseudo supervised loss term, used together with cycle consistency, can effectively adapt a pre-trained model to a new target domain. With no additional data and in a completely unsupervised fashion, our techniques significantly improve pre-trained models on new target domains, increasing PSNR values from 32.84dB to 33.05dB on the Slowflow and from 31.82dB to 32.53dB on the Sintel evaluation datasets.
Learning transferable and domain adaptive feature representations from videos is important for video-relevant tasks such as action recognition. Existing video domain adaptation methods mainly rely on adversarial feature alignment, which has been deri ved from the RGB image space. However, video data is usually associated with multi-modal information, e.g., RGB and optical flow, and thus it remains a challenge to design a better method that considers the cross-modal inputs under the cross-domain adaptation setting. To this end, we propose a unified framework for video domain adaptation, which simultaneously regularizes cross-modal and cross-domain feature representations. Specifically, we treat each modality in a domain as a view and leverage the contrastive learning technique with properly designed sampling strategies. As a result, our objectives regularize feature spaces, which originally lack the connection across modalities or have less alignment across domains. We conduct experiments on domain adaptive action recognition benchmark datasets, i.e., UCF, HMDB, and EPIC-Kitchens, and demonstrate the effectiveness of our components against state-of-the-art algorithms.
Image Completion refers to the task of filling in the missing regions of an image and Image Extrapolation refers to the task of extending an image at its boundaries while keeping it coherent. Many recent works based on GAN have shown progress in addr essing these problem statements but lack adaptability for these two cases, i.e. the neural network trained for the completion of interior masked images does not generalize well for extrapolating over the boundaries and vice-versa. In this paper, we present a technique to train both completion and extrapolation networks concurrently while benefiting each other. We demonstrate our methods efficiency in completing large missing regions and we show the comparisons with the contemporary state of the art baseline.
139 - Shaobo Min , Qi Dai , Hongtao Xie 2021
Cross-modal correlation provides an inherent supervision for video unsupervised representation learning. Existing methods focus on distinguishing different video clips by visual and audio representations. We human visual perception could attend to re gions where sounds are made, and our auditory perception could also ground their frequencies of sounding objects, which we call bidirectional local correspondence. Such supervision is intuitive but not well explored in the contrastive learning framework. This paper introduces a pretext task, Cross-Modal Attention Consistency (CMAC), for exploring the bidirectional local correspondence property. The CMAC approach aims to align the regional attention generated purely from the visual signal with the target attention generated under the guidance of acoustic signal, and do a similar alignment for frequency grounding on the acoustic attention. Accompanied by a remoulded cross-modal contrastive loss where we consider additional within-modal interactions, the CMAC approach works effectively for enforcing the bidirectional alignment. Extensive experiments on six downstream benchmarks demonstrate that CMAC can improve the state-of-the-art performance on both visual and audio modalities.
Previous cycle-consistency correspondence learning methods usually leverage image patches for training. In this paper, we present a fully convolutional method, which is simpler and more coherent to the inference process. While directly applying fully convolutional training results in model collapse, we study the underline reason behind this collapse phenomenon, indicating that the absolute positions of pixels provide a shortcut to easily accomplish cycle-consistence, which hinders the learning of meaningful visual representations. To break this absolute position shortcut, we propose to apply different crops for forward and backward frames, and adopt feature warping to establish correspondence between two crops of a same frame. The former technique enforces the corresponding pixels at forward and back tracks to have different absolute positions, and the latter effectively blocks the shortcuts going between forward and back tracks. In three label propagation benchmarks for pose tracking, face landmark tracking and video object segmentation, our method largely improves the results of vanilla fully convolutional cycle-consistency method, achieving very competitive performance compared with the self-supervised state-of-the-art approaches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا