ترغب بنشر مسار تعليمي؟ اضغط هنا

Case Study on Detecting COVID-19 Health-Related Misinformation in Social Media

169   0   0.0 ( 0 )
 نشر من قبل Mir Mehedi Ahsan Pritom
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

COVID-19 pandemic has generated what public health officials called an infodemic of misinformation. As social distancing and stay-at-home orders came into effect, many turned to social media for socializing. This increase in social media usage has made it a prime vehicle for the spreading of misinformation. This paper presents a mechanism to detect COVID-19 health-related misinformation in social media following an interdisciplinary approach. Leveraging social psychology as a foundation and existing misinformation frameworks, we defined misinformation themes and associated keywords incorporated into the misinformation detection mechanism using applied machine learning techniques. Next, using the Twitter dataset, we explored the performance of the proposed methodology using multiple state-of-the-art machine learning classifiers. Our method shows promising results with at most 78% accuracy in classifying health-related misinformation versus true information using uni-gram-based NLP feature generations from tweets and the Decision Tree classifier. We also provide suggestions on alternatives for countering misinformation and ethical consideration for the study.



قيم البحث

اقرأ أيضاً

The ongoing Coronavirus (COVID-19) pandemic highlights the inter-connectedness of our present-day globalized world. With social distancing policies in place, virtual communication has become an important source of (mis)information. As increasing numb er of people rely on social media platforms for news, identifying misinformation and uncovering the nature of online discourse around COVID-19 has emerged as a critical task. To this end, we collected streaming data related to COVID-19 using the Twitter API, starting March 1, 2020. We identified unreliable and misleading contents based on fact-checking sources, and examined the narratives promoted in misinformation tweets, along with the distribution of engagements with these tweets. In addition, we provide examples of the spreading patterns of prominent misinformation tweets. The analysis is presented and updated on a publically accessible dashboard (https://usc-melady.github.io/COVID-19-Tweet-Analysis) to track the nature of online discourse and misinformation about COVID-19 on Twitter from March 1 - June 5, 2020. The dashboard provides a daily list of identified misinformation tweets, along with topics, sentiments, and emerging trends in the COVID-19 Twitter discourse. The dashboard is provided to improve visibility into the nature and quality of information shared online, and provide real-time access to insights and information extracted from the dataset.
Companies and financial investors are paying increasing attention to social consciousness in developing their corporate strategies and making investment decisions to support a sustainable economy for the future. Public discussion on incidents and eve nts -- controversies -- of companies can provide valuable insights on how well the company operates with regards to social consciousness and indicate the companys overall operational capability. However, there are challenges in evaluating the degree of a companys social consciousness and environmental sustainability due to the lack of systematic data. We introduce a system that utilizes Twitter data to detect and monitor controversial events and show their impact on market volatility. In our study, controversial events are identified from clustered tweets that share the same 5W terms and sentiment polarities of these clusters. Credible news links inside the event tweets are used to validate the truth of the event. A case study on the Starbucks Philadelphia arrests shows that this method can provide the desired functionality.
Fact checking by professionals is viewed as a vital defense in the fight against misinformation.While fact checking is important and its impact has been significant, fact checks could have limited visibility and may not reach the intended audience, s uch as those deeply embedded in polarized communities. Concerned citizens (i.e., the crowd), who are users of the platforms where misinformation appears, can play a crucial role in disseminating fact-checking information and in countering the spread of misinformation. To explore if this is the case, we conduct a data-driven study of misinformation on the Twitter platform, focusing on tweets related to the COVID-19 pandemic, analyzing the spread of misinformation, professional fact checks, and the crowd response to popular misleading claims about COVID-19. In this work, we curate a dataset of false claims and statements that seek to challenge or refute them. We train a classifier to create a novel dataset of 155,468 COVID-19-related tweets, containing 33,237 false claims and 33,413 refuting arguments.Our findings show that professional fact-checking tweets have limited volume and reach. In contrast, we observe that the surge in misinformation tweets results in a quick response and a corresponding increase in tweets that refute such misinformation. More importantly, we find contrasting differences in the way the crowd refutes tweets, some tweets appear to be opinions, while others contain concrete evidence, such as a link to a reputed source. Our work provides insights into how misinformation is organically countered in social platforms by some of their users and the role they play in amplifying professional fact checks.These insights could lead to development of tools and mechanisms that can empower concerned citizens in combating misinformation. The code and data can be found in http://claws.cc.gatech.edu/covid_counter_misinformation.html.
During the COVID-19 pandemic, people started to discuss about pandemic-related topics on social media. On subreddit textit{r/COVID19positive}, a number of topics are discussed or being shared, including experience of those who got a positive test res ult, stories of those who presumably got infected, and questions asked regarding the pandemic and the disease. In this study, we try to understand, from a linguistic perspective, the nature of discussions on the subreddit. We found differences in linguistic characteristics (e.g. psychological, emotional and reasoning) across three different categories of topics. We also classified posts into the different categories using SOTA pre-trained language models. Such classification model can be used for pandemic-related research on social media.
Online social media provides a channel for monitoring peoples social behaviors and their mental distress. Due to the restrictions imposed by COVID-19 people are increasingly using online social networks to express their feelings. Consequently, there is a significant amount of diverse user-generated social media content. However, COVID-19 pandemic has changed the way we live, study, socialize and recreate and this has affected our well-being and mental health problems. There are growing researches that leverage online social media analysis to detect and assess users mental status. In this paper, we survey the literature of social media analysis for mental disorders detection, with a special focus on the studies conducted in the context of COVID-19 during 2020-2021. Firstly, we classify the surveyed studies in terms of feature extraction types, varying from language usage patterns to aesthetic preferences and online behaviors. Secondly, we explore detection methods used for mental disorders detection including machine learning and deep learning detection methods. Finally, we discuss the challenges of mental disorder detection using social media data, including the privacy and ethical concerns, as well as the technical challenges of scaling and deploying such systems at large scales, and discuss the learnt lessons over the last few years.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا