ﻻ يوجد ملخص باللغة العربية
In this short review we propose a critical assessment of the role of chaos for the thermalization of Hamiltonian systems with high dimensionality. We discuss this problem for both classical and quantum systems. A comparison is made between the two situations: some examples from recent and past literature are presented which support the point of view that chaos is not necessary for thermalization. Finally, we suggest that a close analogy holds between the role played by Kinchins theorem for high-dimensional classical systems and the role played by Von Neumanns theorem for many-body quantum systems.
We propose a simple procedure by which the interaction parameters of the classical spin Hamiltonian can be determined from the knowledge of four-point correlation functions and specific heat. The proposal is demonstrated by using the correlation and
Erosion by flowing water is one of the major forces shaping the surface of Earth. Studies in the last decade have shown, in particular, that the drainage region of rivers, where water is collected, exhibits scale invariant features characterized by e
We investigate the non-equilibrium dynamics of a class of isolated one-dimensional systems possessing two degenerate ground states, initialized in a low-energy symmetric phase. We report the emergence of a time-scale separation between fast (radiatio
We propose a minimal model for the emergence of a directed flow in autonomous Hamiltonian systems. It is shown that internal breaking of the spatio-temporal symmetries, via localised initial conditions, that are unbiased with respect to the transport
Do negative absolute temperatures matter physics and specifically Statistical Physics? We provide evidence that we can certainly answer positively to this vexata quaestio. The great majority of models investigated by statistical mechanics over almost