ترغب بنشر مسار تعليمي؟ اضغط هنا

Measuring the spins of heavy binary black holes

82   0   0.0 ( 0 )
 نشر من قبل Andrea Sylvia Biscoveanu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An accurate and precise measurement of the spins of individual merging black holes is required to understand their origin. While previous studies have indicated that most of the spin information comes from the inspiral part of the signal, the informative spin measurement of the heavy binary black hole system GW190521 suggests that the merger and ringdown can contribute significantly to the spin constraints for such massive systems. We perform a systematic study into the measurability of the spin parameters of individual heavy binary black hole mergers using a numerical relativity surrogate waveform model including the effects of both spin-induced precession and higher-order modes. We find that the spin measurements are driven by the merger and ringdown parts of the signal for GW190521-like systems, but the uncertainty in the measurement increases with the total mass of the system. We are able to place meaningful constraints on the spin parameters even for systems observed at moderate signal-to-noise ratios, but the measurability depends on the exact six-dimensional spin configuration of the system. Finally, we find that the azimuthal angle between the in-plane projections of the component spin vectors at a given reference frequency cannot be well-measured for most of our simulated configurations even for signals observed with high signal-to-noise ratios.


قيم البحث

اقرأ أيضاً

Binary black holes on quasicircular orbits with spins aligned with their orbital angular momentum have been testbeds for analytic and numerical relativity for decades, not least because symmetry ensures that such configurations are equilibrium soluti ons to the spin-precession equations. In this work, we show that these solutions can be unstable when the spin of the higher-mass black hole is aligned with the orbital angular momentum and the spin of the lower-mass black hole is anti-aligned. Spins in these configurations are unstable to precession to large misalignment when the binary separation $r$ is between the values $r_{rm udpm}= (sqrt{chi_1} pm sqrt{q chi_2})^4 (1-q)^{-2} M$, where $M$ is the total mass, $q equiv m_2/m_1$ is the mass ratio, and $chi_1$ ($chi_2$) is the dimensionless spin of the more (less) massive black hole. This instability exists for a wide range of spin magnitudes and mass ratios and can occur in the strong-field regime near merger. We describe the origin and nature of the instability using recently developed analytical techniques to characterize fully generic spin precession. This instability provides a channel to circumvent astrophysical spin alignment at large binary separations, allowing significant spin precession prior to merger affecting both gravitational-wave and electromagnetic signatures of stellar-mass and supermassive binary black holes.
We revisit the suggestion that dual jets can be produced during the inspiral and merger of supermassive black holes when these are immersed in a force-free plasma threaded by a uniform magnetic field. By performing independent calculations and by com puting the electromagnetic emission in a way which is consistent with estimates using the Poynting flux, we show that a dual-jet structure is present but energetically subdominant with respect to a non-collimated and predominantly quadrupolar emission, which is similar to the one computed when the binary is in electrovacuum. While our findings set serious restrictions on the detectability of dual jets from coalescing binaries, they also increase the chances of detecting an EM counterpart from these systems.
Binary black holes with spins that are aligned with the orbital angular momentum do not precess. However, post-Newtonian calculations predict that up-down binaries, in which the spin of the heavier (lighter) black hole is aligned (antialigned) with t he orbital angular momentum, are unstable when the spins are slightly perturbed from perfect alignment. This instability provides a possible mechanism for the formation of precessing binaries in environments where sources are preferentially formed with (anti) aligned spins. In this paper, we present the first full numerical relativity simulations capturing this instability. These simulations span $sim 100$ orbits and $sim 3$-$5$ precession cycles before merger, making them some of the longest numerical relativity simulations to date. Initialized with a small perturbation of $1^{circ}$-$10^{circ}$, the instability causes a dramatic growth of the spin misalignments, which can reach $sim 90^{circ}$ near merger. We show that this leaves a strong imprint on the subdominant modes of the gravitational wave signal, which can potentially be used to distinguish up-down binaries from other sources. Finally, we show that post-Newtonian and effective-one-body approximants are able to reproduce the unstable dynamics of up-down binaries extracted from numerical relativity.
A typical galaxy is thought to contain tens of millions of stellar-mass black holes, the collapsed remnants of once massive stars, and a single nuclear supermassive black hole. Both classes of black holes accrete gas from their environments. The accr eting gas forms a flattened orbiting structure known as an accretion disk. During the past several years, it has become possible to obtain measurements of the spins of the two classes of black holes by modeling the X-ray emission from their accretion disks. Two methods are employed, both of which depend upon identifying the inner radius of the accretion disk with the innermost stable circular orbit (ISCO), whose radius depends only on the mass and spin of the black hole. In the Fe K method, which applies to both classes of black holes, one models the profile of the relativistically-broadened iron line with a special focus on the gravitationally redshifted red wing of the line. In the continuum-fitting method, which has so far only been applied to stellar-mass black holes, one models the thermal X-ray continuum spectrum of the accretion disk. We discuss both methods, with a strong emphasis on the continuum-fitting method and its application to stellar-mass black holes. Spin results for eight stellar-mass black holes are summarized. These data are used to argue that the high spins of at least some of these black holes are natal, and that the presence or absence of relativistic jets in accreting black holes is not entirely determined by the spin of the black hole.
Now that LIGO has revealed the existence of a large number of binary black holes, identifying their origin becomes an important challenge. They might originate in more isolated regions of the galaxy or alternatively they might reside in dense environ ments such as galactic centers or globular clusters. In the latter case, their center of mass motion as well as their orbital parameters should lead to observable changes in the waveforms, which would reflect their gravitational interactions with the surrounding matter. This would be reflected in the gravitational wave signal by a net phase change or even a time-dependent Doppler shift. We show that this time-dependence might be observable in future space gravitational wave detectors such as LISA which could provide direct information about the black hole binary environments and otherwise invisible ambient mass.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا