ترغب بنشر مسار تعليمي؟ اضغط هنا

Mid-Infrared Microscopy via Position Correlations of Undetected Photons

114   0   0.0 ( 0 )
 نشر من قبل Inna Kviatkovsky
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum imaging with undetected photons (QIUP) has recently emerged as a new powerful imaging tool. Exploiting the spatial entanglement of photon pairs, it allows decoupling of the sensing and detection wavelengths, facilitating imaging in otherwise challenging spectral regions with mature silicon-based detection technology. All existing implementations of QIUP have so far utilised the momentum correlations within the biphoton state. Here, for the first time, we implement and examine theoretically and numerically the complementary scenario - utilising the tight position correlations formed within photon pair at birth. This image plane arrangement facilitates high resolution imaging with comparative experimental ease, and we experimentally show resolutions below 10 $mu$m at a sensing wavelength of 3.7 $mu$m. Moreover, imaging a slice of mouse heart tissue at the mid-IR to reveal morphological features on the cellular level, we further demonstrate the viability of the technique for the life sciences. These results offer new perspectives on the capabilities of QIUP for label-free wide-field microscopy, enabling new real-world applications in biomedical as well as industrial imaging at inaccessible wavelengths.

قيم البحث

اقرأ أيضاً

Owing to its capacity for unique (bio)-chemical specificity, microscopy withmid-IR illumination holds tremendous promise for a wide range of biomedical and industrial applications. The primary limitation, however, remains detection; with current mid- IR detection technology often marrying inferior technical capabilities with prohibitive costs. This has lead to approaches that shift detection towavelengths into the visible regime, where vastly superior silicon-based cameratechnology is available. Here, we experimentally show how nonlinear interferometry with entangled light can provide a powerful tool for mid-IR microscopy, while only requiring near-infrared detection with a standard CMOS camera. In this proof-of-principle implementation, we demonstrate intensity imaging overa broad wavelength range covering 3.4-4.3um and demonstrate a spatial resolution of 35um for images containing 650 resolved elements. Moreover, we demonstrate our technique is fit for purpose, acquiring microscopic images of biological tissue samples in the mid-IR. These results open a new perspective for potential relevance of quantum imaging techniques in the life sciences.
Quantum imaging with undetected photons (QIUP) is a unique method of image acquisition where the photons illuminating the object are not detected. This method relies on quantum interference and spatial correlations between the twin photons to form an image. Here we present a detailed study of the resolution limits of position correlation enabled QIUP. We establish a quantitative relation between the spatial resolution and the twin photon position correlation in the spontaneous parametric down-conversion process (SPDC). Furthermore, we also quantitatively establish the roles that the wavelength of the undetected illumination field and the wavelength of the detected field play in the resolution. Like ghost imaging and unlike conventional imaging, the resolution limit imposed by the spatial correlation between twin photons in QIUP cannot be further improved by conventional optical techniques.
Quantum imaging with undetected photons (QIUP) is a unique imaging technique that does not require the detection of the light used for illuminating the object. The technique requires a correlated pair of photons. In the existing implementations of QI UP, the imaging is enabled by the momentum correlation between the twin photons. We investigate the complementary scenario in which the imaging is instead enabled by the position correlation between the two photons. We present a general theory and show that the properties of the images obtained in these two cases are significantly distinct.
Mid-infrared light scatters much less than shorter wavelengths, allowing greatly enhanced penetration depths for optical imaging techniques such as optical coherence tomography (OCT). However, both detection and broadband sources in the mid-IR are te chnologically challenging. Interfering entangled photons in a nonlinear interferometer enables sensing with undetected photons making mid-IR sources and detectors obsolete. Here we implement mid-infrared frequency-domain OCT based on ultra-broadband entangled photon pairs. We demonstrate 10 ${mu}$m axial and 20 ${mu}$m lateral resolution 2D and 3D imaging of strongly scattering ceramic and paint samples. Together with $10^6$ times less noise scaled for the same amount of probe light and also vastly reduced footprint and technical complexity this technique can outperform conventional approaches with classical mid-IR light.
Quantum imaging with undetected photons is a recently introduced technique that goes significantly beyond what was previously possible. In this technique, images are formed without detecting the light that interacted with the object that is imaged. G iven this unique advantage over the existing imaging schemes, it is now of utmost importance to understand its resolution limits, in particular what governs the maximal achievable spatial resolution. We show both theoretically and experimentally that the momentum correlation between the detected and undetected photons governs the spatial resolution - a stronger correlation results in a higher resolution. In our experiment, the momentum correlation plays the dominating role in determining the resolution compared to the effect of diffraction. We find that the resolution is determined by the wavelength of the undetected light rather than the wavelength of the detected light. Our results thus show that it is in principle possible to obtain resolution characterized by a wavelength much shorter than the detected wavelength.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا