ترغب بنشر مسار تعليمي؟ اضغط هنا

Frequency-domain optical coherence tomography with undetected mid-infrared photons

272   0   0.0 ( 0 )
 نشر من قبل Aron Vanselow
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Mid-infrared light scatters much less than shorter wavelengths, allowing greatly enhanced penetration depths for optical imaging techniques such as optical coherence tomography (OCT). However, both detection and broadband sources in the mid-IR are technologically challenging. Interfering entangled photons in a nonlinear interferometer enables sensing with undetected photons making mid-IR sources and detectors obsolete. Here we implement mid-infrared frequency-domain OCT based on ultra-broadband entangled photon pairs. We demonstrate 10 ${mu}$m axial and 20 ${mu}$m lateral resolution 2D and 3D imaging of strongly scattering ceramic and paint samples. Together with $10^6$ times less noise scaled for the same amount of probe light and also vastly reduced footprint and technical complexity this technique can outperform conventional approaches with classical mid-IR light.



قيم البحث

اقرأ أيضاً

Owing to its capacity for unique (bio)-chemical specificity, microscopy withmid-IR illumination holds tremendous promise for a wide range of biomedical and industrial applications. The primary limitation, however, remains detection; with current mid- IR detection technology often marrying inferior technical capabilities with prohibitive costs. This has lead to approaches that shift detection towavelengths into the visible regime, where vastly superior silicon-based cameratechnology is available. Here, we experimentally show how nonlinear interferometry with entangled light can provide a powerful tool for mid-IR microscopy, while only requiring near-infrared detection with a standard CMOS camera. In this proof-of-principle implementation, we demonstrate intensity imaging overa broad wavelength range covering 3.4-4.3um and demonstrate a spatial resolution of 35um for images containing 650 resolved elements. Moreover, we demonstrate our technique is fit for purpose, acquiring microscopic images of biological tissue samples in the mid-IR. These results open a new perspective for potential relevance of quantum imaging techniques in the life sciences.
We report on a technically simple approach to achieve high-resolution and high-sensitivity Fourier-domain OCT imaging in the mid-infrared range. The proposed OCT system employs an InF3 supercontinuum source. A specially designed dispersive scanning s pectrometer based on a single InAsSb point detector is employed for detection. The spectrometer enables structural OCT imaging in the spectral range from 3140 nm to 4190 nm with a characteristic sensitivity of over 80 dB and an axial resolution below 8 um. The capabilities of the system are demonstrated for imaging of porous ceramic samples and transition-stage green parts fabricated using an emerging method of lithography-based ceramic manufacturing. Additionally, we demonstrate the performance and flexibility of the system by OCT imaging using an inexpensive low-power (average power of 16 mW above 3 um wavelength) mid-IR supercontinuum source.
The potential for improving the penetration depth of optical coherence tomography systems by using increasingly longer wavelength light sources has been known since the inception of the technique in the early 1990s. Nevertheless, the development of m id-infrared optical coherence tomography has long been challenged by the maturity and fidelity of optical components in this spectral region, resulting in slow acquisition, low sensitivity, and poor axial resolution. In this work, a mid-infrared spectral-domain optical coherence tomography system operating at 4 micron central wavelength with an axial resolution of 8.6 microns is demonstrated. The system produces 2D cross-sectional images in real-time enabled by a high-brightness 0.9-4.7 micron mid-infrared supercontinuum source with 1 MHz pulse repetition rate for illumination and broadband upconversion of more than 1 micron bandwidth from 3.58-4.63 microns to 820-865 nm, where a standard 800 nm spectrometer can be used for fast detection. Images produced by the mid-infrared system are compared with those delivered by a state-of-the-art ultra-high-resolution near-infrared optical coherence tomography system operating at 1.3 {mu}m, and the potential applications and samples suited for this technology are discussed. In doing so, the first practical mid-infrared optical coherence tomography system is demonstrated, with immediate applications in real-time non-destructive testing for the inspection of defects and thickness measurements in samples that are too highly scattering at shorter wavelengths.
We report on Mid-infrared (MIR) OCT at 4 $mu$m based on collinear sum-frequency upconversion and promote the A-scan scan rate to 3 kHz. We demonstrate the increased imaging speed for two spectral realizations, one providing an axial resolution of 8.6 $mu$m, and one providing a record axial resolution of 5.8 $mu$m. Image performance is evaluated by sub-surface micro-mapping of a plastic glove and real-time monitoring of CO$_2$ in parallel with OCT imaging.
Optical coherence tomography (OCT) is a 3D imaging technique that was introduced in 1991 [Science 254, 1178 (1991); Applied Optics 31, 919 (1992)]. Since 2018 there has been growing interest in a new type of OCT scheme based on the use of so-called n onlinear interferometers, interferometers that contain optical parametric amplifiers. Some of these OCT schemes are based on the idea of induced coherence [Physical Review A 97, 023824 (2018)], while others make use of an SU(1,1) interferometer [Quantum Science and Technology 3 025008 (2018)]. What are the differences and similarities between the output signals measured in standard OCT and in these new OCT schemes? Are there any differences between OCT schemes based on induced coherence and on an SU(1,1) interferometer? Differences can unveil potential advantages of OCT based on nonlinear interferometers when compared with conventional OCT schemes. Similarities might benefit the schemes based on nonlinear interferometers from the wealth of research and technology related to conventional OCT schemes. In all cases we will consider the scheme where the optical sectioning of the sample is obtained by measuring the output signal spectrum (spectral, or Fourier-domain OCT), since it shows better performance in terms of speed and sensitivity than its counterpart time-domain OCT.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا