ﻻ يوجد ملخص باللغة العربية
Safety in reinforcement learning has become increasingly important in recent years. Yet, existing solutions either fail to strictly avoid choosing unsafe actions, which may lead to catastrophic results in safety-critical systems, or fail to provide regret guarantees for settings where safety constraints need to be learned. In this paper, we address both problems by first modeling safety as an unknown linear cost function of states and actions, which must always fall below a certain threshold. We then present algorithms, termed SLUCB-QVI and RSLUCB-QVI, for episodic Markov decision processes (MDPs) with linear function approximation. We show that SLUCB-QVI and RSLUCB-QVI, while with emph{no safety violation}, achieve a $tilde{mathcal{O}}left(kappasqrt{d^3H^3T}right)$ regret, nearly matching that of state-of-the-art unsafe algorithms, where $H$ is the duration of each episode, $d$ is the dimension of the feature mapping, $kappa$ is a constant characterizing the safety constraints, and $T$ is the total number of action plays. We further present numerical simulations that corroborate our theoretical findings.
Despite many algorithmic advances, our theoretical understanding of practical distributional reinforcement learning methods remains limited. One exception is Rowland et al. (2018)s analysis of the C51 algorithm in terms of the Cramer distance, but th
Reinforcement learning (RL) with linear function approximation has received increasing attention recently. However, existing work has focused on obtaining $sqrt{T}$-type regret bound, where $T$ is the number of interactions with the MDP. In this pape
Deep reinforcement learning has achieved impressive successes yet often requires a very large amount of interaction data. This result is perhaps unsurprising, as using complicated function approximation often requires more data to fit, and early theo
We propose a model-free reinforcement learning algorithm inspired by the popular randomized least squares value iteration (RLSVI) algorithm as well as the optimism principle. Unlike existing upper-confidence-bound (UCB) based approaches, which are of
We study reinforcement learning (RL) with linear function approximation. Existing algorithms for this problem only have high-probability regret and/or Probably Approximately Correct (PAC) sample complexity guarantees, which cannot guarantee the conve