ترغب بنشر مسار تعليمي؟ اضغط هنا

Information Theoretic Evaluation of Privacy-Leakage, Interpretability, and Transferability for a Novel Trustworthy AI Framework

608   0   0.0 ( 0 )
 نشر من قبل Mohit Kumar
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Guidelines and principles of trustworthy AI should be adhered to in practice during the development of AI systems. This work suggests a novel information theoretic trustworthy AI framework based on the hypothesis that information theory enables taking into account the ethical AI principles during the development of machine learning and deep learning models via providing a way to study and optimize the inherent tradeoffs between trustworthy AI principles. Under the proposed framework, a unified approach to ``privacy-preserving interpretable and transferable learning is considered to introduce the information theoretic measures for privacy-leakage, interpretability, and transferability. A technique based on variational optimization, employing emph{conditionally deep autoencoders}, is developed for practically calculating the defined information theoretic measures for privacy-leakage, interpretability, and transferability.

قيم البحث

اقرأ أيضاً

The high demand of artificial intelligence services at the edges that also preserve data privacy has pushed the research on novel machine learning paradigms that fit those requirements. Federated learning has the ambition to protect data privacy thro ugh distributed learning methods that keep the data in their data silos. Likewise, differential privacy attains to improve the protection of data privacy by measuring the privacy loss in the communication among the elements of federated learning. The prospective matching of federated learning and differential privacy to the challenges of data privacy protection has caused the release of several software tools that support their functionalities, but they lack of the needed unified vision for those techniques, and a methodological workflow that support their use. Hence, we present the Sherpa.ai Federated Learning framework that is built upon an holistic view of federated learning and differential privacy. It results from the study of how to adapt the machine learning paradigm to federated learning, and the definition of methodological guidelines for developing artificial intelligence services based on federated learning and differential privacy. We show how to follow the methodological guidelines with the Sherpa.ai Federated Learning framework by means of a classification and a regression use cases.
Machine Learning and Artificial Intelligence are considered an integral part of the Fourth Industrial Revolution. Their impact, and far-reaching consequences, while acknowledged, are yet to be comprehended. These technologies are very specialized, an d few organizations and select highly trained professionals have the wherewithal, in terms of money, manpower, and might, to chart the future. However, concentration of power can lead to marginalization, causing severe inequalities. Regulatory agencies and governments across the globe are creating national policies, and laws around these technologies to protect the rights of the digital citizens, as well as to empower them. Even private, not-for-profit organizations are also contributing to democratizing the technologies by making them emph{accessible} and emph{affordable}. However, accessibility and affordability are all but a few of the facets of democratizing the field. Others include, but not limited to, emph{portability}, emph{explainability}, emph{credibility}, emph{fairness}, among others. As one can imagine, democratizing AI is a multi-faceted problem, and it requires advancements in science, technology and policy. At texttt{mlsquare}, we are developing scientific tools in this space. Specifically, we introduce an opinionated, extensible, texttt{Python} framework that provides a single point of interface to a variety of solutions in each of the categories mentioned above. We present the design details, APIs of the framework, reference implementations, road map for development, and guidelines for contributions.
105 - Wentao Huang , Kechen Zhang 2016
A framework is presented for unsupervised learning of representations based on infomax principle for large-scale neural populations. We use an asymptotic approximation to the Shannons mutual information for a large neural population to demonstrate th at a good initial approximation to the global information-theoretic optimum can be obtained by a hierarchical infomax method. Starting from the initial solution, an efficient algorithm based on gradient descent of the final objective function is proposed to learn representations from the input datasets, and the method works for complete, overcomplete, and undercomplete bases. As confirmed by numerical experiments, our method is robust and highly efficient for extracting salient features from input datasets. Compared with the main existing methods, our algorithm has a distinct advantage in both the training speed and the robustness of unsupervised representation learning. Furthermore, the proposed method is easily extended to the supervised or unsupervised model for training deep structure networks.
The remarkable success of machine learning has fostered a growing number of cloud-based intelligent services for mobile users. Such a service requires a user to send data, e.g. image, voice and video, to the provider, which presents a serious challen ge to user privacy. To address this, prior works either obfuscate the data, e.g. add noise and remove identity information, or send representations extracted from the data, e.g. anonymized features. They struggle to balance between the service utility and data privacy because obfuscated data reduces utility and extracted representation may still reveal sensitive information. This work departs from prior works in methodology: we leverage adversarial learning to a better balance between privacy and utility. We design a textit{representation encoder} that generates the feature representations to optimize against the privacy disclosure risk of sensitive information (a measure of privacy) by the textit{privacy adversaries}, and concurrently optimize with the task inference accuracy (a measure of utility) by the textit{utility discriminator}. The result is the privacy adversarial network (systemname), a novel deep model with the new training algorithm, that can automatically learn representations from the raw data. Intuitively, PAN adversarially forces the extracted representations to only convey the information required by the target task. Surprisingly, this constitutes an implicit regularization that actually improves task accuracy. As a result, PAN achieves better utility and better privacy at the same time! We report extensive experiments on six popular datasets and demonstrate the superiority of systemname compared with alternative methods reported in prior work.
This paper proposes Characteristic Examples for effectively fingerprinting deep neural networks, featuring high-robustness to the base model against model pruning as well as low-transferability to unassociated models. This is the first work taking bo th robustness and transferability into consideration for generating realistic fingerprints, whereas current methods lack practical assumptions and may incur large false positive rates. To achieve better trade-off between robustness and transferability, we propose three kinds of characteristic examples: vanilla C-examples, RC-examples, and LTRC-example, to derive fingerprints from the original base model. To fairly characterize the trade-off between robustness and transferability, we propose Uniqueness Score, a comprehensive metric that measures the difference between robustness and transferability, which also serves as an indicator to the false alarm problem.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا