ﻻ يوجد ملخص باللغة العربية
Unitary drivings of quantum systems are ubiquitous in experiments and applications of quantum mechanics and the underlying energetic aspects, particularly relevant in quantum thermodynamics, are receiving growing attention. We investigate energetic advantages in unitary driving obtained from initial non-thermal states. We introduce the non-cyclic ergotropy to quantify the energetic gains, from which coherent (coherence-based) and incoherent (population-based) contributions are identified. In particular, initial quantum coherences appear to be always beneficial whereas non-passive population distributions not systematically. Additionally, these energetic gains are accessible only through non-adiabatic dynamics, contrasting with the usual optimality of adiabatic dynamics for initial thermal states. Finally, following frameworks established in the context of shortcut-to-adiabaticity, the energetic cost related to the implementation of the optimal drives are analysed and, in most situations, are found to be smaller than the energetic cost associated with shortcut-to-adiabaticity. We treat explicitly the example of a two-level system and show that energetic advantages increase with larger initial coherences, illustrating the interplay between initial coherences and the ability of the dynamics to consume and use coherences.
Entangled states like two-mode squeezed vacuum states are known to give quantum advantage in the illumination protocol, a method to detect a weakly reflecting target submerged in a thermal background. We use non-Gaussian photon-added and subtracted s
Quantum walks have by now been realized in a large variety of different physical settings. In some of these, particularly with trapped ions, the walk is implemented in phase space, where the corresponding position states are not orthogonal. We develo
We propose a classical to quantum information encoding system using non--orthogonal states and apply it to the problem of searching an element in a quantum list. We show that the proposed encoding scheme leads to an exponential gain in terms of quant
Characterization of equilibrium topological quantum phases by non-equilibrium quench dynamics provides a novel and efficient scheme in detecting topological invariants defined in equilibrium. Nevertheless, most of the previous studies have focused on
With adiabatic techniques, it is possible to create quantum superposition states with high fidelity while exercising limited control over the parameters of a system. However, because these techniques are slow compared to other timescales in the syste