ترغب بنشر مسار تعليمي؟ اضغط هنا

Emergent topology under slow non-adiabatic quantum dynamics

126   0   0.0 ( 0 )
 نشر من قبل Fuxiang Li
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Characterization of equilibrium topological quantum phases by non-equilibrium quench dynamics provides a novel and efficient scheme in detecting topological invariants defined in equilibrium. Nevertheless, most of the previous studies have focused on the ideal sudden quench regime. Here we provide a generic non-adiabatic protocol of slowly quenching the system Hamiltonian, and investigate the non-adiabatic dynamical characterization scheme of topological phase. The {it slow} quench protocol is realized by introducing a Coulomb-like Landau-Zener problem, and it can describe, in a unified way, the crossover from sudden quench regime (deep non-adiabatic limit) to adiabatic regime. By analytically obtaining the final state vector after non-adiabatic evolution, we can calculate the time-averaged spin polarization and the corresponding topological spin texture. We find that the topological invariants of the post-quench Hamiltonian are characterized directly by the values of spin texture on the band inversion surfaces. Compared to the sudden quench regime, where one has to take an additional step to calculate the {it gradients} of spin polarization, this non-adiabatic characterization provides a {it minimal} scheme in detecting the topological invariants. Our findings are not restricted to 1D and 2D topological phases under Coulomb-like quench protocol, but are also valid for higher dimensional system or different quench protocol.

قيم البحث

اقرأ أيضاً

We present a fast scheme for arbitrary unitary control of interacting bosonic atoms in a double-well. Assuming fixed inter-well tunnelling rate and intra-well interaction strength, we control the many-atom state by a discrete sequence of shifts of th e single-well energies. For strong interactions, resonant tunnelling transitions implement beam-splitter U(2) rotations among atom number eigenstates, which can be combined and, thus, permit full controllability. By numerically optimizing such sequences of couplings at avoided level crossings (CALC), we extend the realm of full controllability to a wide range of realistic interaction parameters, while we remain in the simple control space. We demonstrate the efficiency and the high achievable fidelity of our proposal with non-adiabatic population transfer, N00N-state creation, a C-NOT gate, and a transistor-like, conditional evolution of several atoms.
116 - Nicol`o Defenu 2020
An analytically solvable model for quasi-static transformations across quantum critical points featuring Bosonic quasi-particle excitations is presented. The model proves that adiabaticity breakdown is a general feature of universal slow dynamics in these systems. The existence of an anti-adiabatic dynamical phase with vanishing ground state fidelity in the slow drive limit is also proven. The relation of these findings with the Kibble-Zurek mechanism and their consequences on defect formation in many body systems ramped across a quantum phase transition are discussed.
The assumption that quantum systems relax to a stationary state in the long-time limit underpins statistical physics and much of our intuitive understanding of scientific phenomena. For isolated systems this follows from the eigenstate thermalization hypothesis. When an environment is present the expectation is that all of phase space is explored, eventually leading to stationarity. Notable exceptions are decoherence-free subspaces that have important implications for quantum technologies and have so far only been studied for systems with a few degrees of freedom. Here we identify simple and generic conditions for dissipation to prevent a quantum many-body system from ever reaching a stationary state. We go beyond dissipative quantum state engineering approaches towards controllable long-time non-stationarity typically associated with macroscopic complex systems. This coherent and oscillatory evolution constitutes a dissipative version of a quantum time-crystal. We discuss the possibility of engineering such complex dynamics with fermionic ultracold atoms in optical lattices.
We investigate quantum nonlinear effects at a level of individual quanta in a double tripod atom-light coupling scheme involving two atomic Rydberg states. In such a scheme the slow light coherently coupled to strongly interacting Rydberg states repr esents a two-component or spinor light. The scheme provides additional possibilities for the control and manipulation of light quanta. A distinctive feature of the proposed setup is that it combines the spin-orbit coupling for the spinor slow light with an interaction between the photons, enabling generation of the second probe beam even when two-photon detuning is zero. Furthermore, the interaction between the photons can become repulsive if the one-photon detunings have opposite signs. This is different from a single ladder atom-light coupling scheme, in which the interaction between the photons is attractive for both positive and negative detunings, as long as the Rabi frequency of the control beam is not too large.
Identifying universal properties of non-equilibrium quantum states is a major challenge in modern physics. A fascinating prediction is that classical hydrodynamics emerges universally in the evolution of any interacting quantum system. Here, we exper imentally probe the quantum dynamics of 51 individually controlled ions, realizing a long-range interacting spin chain. By measuring space-time resolved correlation functions in an infinite temperature state, we observe a whole family of hydrodynamic universality classes, ranging from normal diffusion to anomalous superdiffusion, that are described by Levy flights. We extract the transport coefficients of the hydrodynamic theory, reflecting the microscopic properties of the system. Our observations demonstrate the potential for engineered quantum systems to provide key insights into universal properties of non-equilibrium states of quantum matter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا