ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep Probabilistic Time Series Forecasting using Augmented Recurrent Input for Dynamic Systems

110   0   0.0 ( 0 )
 نشر من قبل Haitao Liu
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

The demand of probabilistic time series forecasting has been recently raised in various dynamic system scenarios, for example, system identification and prognostic and health management of machines. To this end, we combine the advances in both deep generative models and state space model (SSM) to come up with a novel, data-driven deep probabilistic sequence model. Specially, we follow the popular encoder-decoder generative structure to build the recurrent neural networks (RNN) assisted variational sequence model on an augmented recurrent input space, which could induce rich stochastic sequence dependency. Besides, in order to alleviate the issue of inconsistency between training and predicting as well as improving the mining of dynamic patterns, we (i) propose using a hybrid output as input at next time step, which brings training and predicting into alignment; and (ii) further devise a generalized auto-regressive strategy that encodes all the historical dependencies at current time step. Thereafter, we first investigate the methodological characteristics of the proposed deep probabilistic sequence model on toy cases, and then comprehensively demonstrate the superiority of our model against existing deep probabilistic SSM models through extensive numerical experiments on eight system identification benchmarks from various dynamic systems. Finally, we apply our sequence model to a real-world centrifugal compressor sensor data forecasting problem, and again verify its outstanding performance by quantifying the time series predictive distribution.

قيم البحث

اقرأ أيضاً

Probabilistic time series forecasting involves estimating the distribution of future based on its history, which is essential for risk management in downstream decision-making. We propose a deep state space model for probabilistic time series forecas ting whereby the non-linear emission model and transition model are parameterized by networks and the dependency is modeled by recurrent neural nets. We take the automatic relevance determination (ARD) view and devise a network to exploit the exogenous variables in addition to time series. In particular, our ARD network can incorporate the uncertainty of the exogenous variables and eventually helps identify useful exogenous variables and suppress those irrelevant for forecasting. The distribution of multi-step ahead forecasts are approximated by Monte Carlo simulation. We show in experiments that our model produces accurate and sharp probabilistic forecasts. The estimated uncertainty of our forecasting also realistically increases over time, in a spontaneous manner.
Deep Learning (DL) models can be used to tackle time series analysis tasks with great success. However, the performance of DL models can degenerate rapidly if the data are not appropriately normalized. This issue is even more apparent when DL is used for financial time series forecasting tasks, where the non-stationary and multimodal nature of the data pose significant challenges and severely affect the performance of DL models. In this work, a simple, yet effective, neural layer, that is capable of adaptively normalizing the input time series, while taking into account the distribution of the data, is proposed. The proposed layer is trained in an end-to-end fashion using back-propagation and leads to significant performance improvements compared to other evaluated normalization schemes. The proposed method differs from traditional normalization methods since it learns how to perform normalization for a given task instead of using a fixed normalization scheme. At the same time, it can be directly applied to any new time series without requiring re-training. The effectiveness of the proposed method is demonstrated using a large-scale limit order book dataset, as well as a load forecasting dataset.
Cyber-physical systems often consist of entities that interact with each other over time. Meanwhile, as part of the continued digitization of industrial processes, various sensor technologies are deployed that enable us to record time-varying attribu tes (a.k.a., time series) of such entities, thus producing correlated time series. To enable accurate forecasting on such correlated time series, this paper proposes two models that combine convolutional neural networks (CNNs) and recurrent neural networks (RNNs). The first model employs a CNN on each individual time series, combines the convoluted features, and then applies an RNN on top of the convoluted features in the end to enable forecasting. The second model adds additional auto-encoders into the individual CNNs, making the second model a multi-task learning model, which provides accurate and robust forecasting. Experiments on two real-world correlated time series data set suggest that the proposed two models are effective and outperform baselines in most settings. This report extends the paper Correlated Time Series Forecasting using Multi-Task Deep Neural Networks, to appear in ACM CIKM 2018, by providing additional experimental results.
Multivariate time series prediction has attracted a lot of attention because of its wide applications such as intelligence transportation, AIOps. Generative models have achieved impressive results in time series modeling because they can model data d istribution and take noise into consideration. However, many existing works can not be widely used because of the constraints of functional form of generative models or the sensitivity to hyperparameters. In this paper, we propose ScoreGrad, a multivariate probabilistic time series forecasting framework based on continuous energy-based generative models. ScoreGrad is composed of time series feature extraction module and conditional stochastic differential equation based score matching module. The prediction can be achieved by iteratively solving reverse-time SDE. To the best of our knowledge, ScoreGrad is the first continuous energy based generative model used for time series forecasting. Furthermore, ScoreGrad achieves state-of-the-art results on six real-world datasets. The impact of hyperparameters and sampler types on the performance are also explored. Code is available at https://github.com/yantijin/ScoreGradPred.
Time series forecasting based on deep architectures has been gaining popularity in recent years due to their ability to model complex non-linear temporal dynamics. The recurrent neural network is one such model capable of handling variable-length inp ut and output. In this paper, we leverage recent advances in deep generative models and the concept of state space models to propose a stochastic adaptation of the recurrent neural network for multistep-ahead time series forecasting, which is trained with stochastic gradient variational Bayes. In our model design, the transition function of the recurrent neural network, which determines the evolution of the hidden states, is stochastic rather than deterministic as in a regular recurrent neural network; this is achieved by incorporating a latent random variable into the transition process which captures the stochasticity of the temporal dynamics. Our model preserves the architectural workings of a recurrent neural network for which all relevant information is encapsulated in its hidden states, and this flexibility allows our model to be easily integrated into any deep architecture for sequential modelling. We test our model on a wide range of datasets from finance to healthcare; results show that the stochastic recurrent neural network consistently outperforms its deterministic counterpart.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا