ﻻ يوجد ملخص باللغة العربية
General Relativity can be reformulated as a diffeomorphism invariant gauge theory of the Lorentz group, with Lagrangian of the type $f(Fwedge F)$, where $F$ is the curvature 2-form of the spin connection. A theory from this class with a generic $f$ is known to propagate eight degrees of freedom: a massless graviton, a massive graviton and a scalar. General Relativity in this formalism avoids extra degrees of freedom because the function $f$ is special and leads to the appearance of six extra primary constraints on the phase space variables. Our main new result is that there are other theories of the type $f(Fwedge F)$ that lead to six extra primary constraints. However, only in the case of GR the dynamics is such that these six primary constraints get supplemented by six secondary constraints, which gives the end result of two propagating degrees of freedom. This is how uniqueness of GR manifests itself in this ``pure spin connection formalism. The other theories we discover are shown to give examples of irregular dynamical systems. At the linear level around (anti-)de Sitter space they have two degrees of freedom, as General Relativity, with the extra ones manifesting themselves only non-linearly.
The junction conditions for General Relativity in the presence of domain walls with intrinsic spin are derived in three and higher dimensions. A stress tensor and a spin current can be defined just by requiring the existence of a well defined volume
The properties of Lorentz transformations in de Sitter relativity are studied. It is shown that, in addition to leaving invariant the velocity of light, they also leave invariant the length-scale related to the curvature of the de Sitter spacetime. T
We explore General Relativity solutions with stealth scalar hair in general quadratic higher-order scalar-tensor theories. Adopting the assumption that the scalar field has a constant kinetic term, we derive in a fully covariant manner a set of condi
We study the spontaneously induced general relativity (GR) from the scalar-tensor gravity. We demonstrate by numerical methods that a novel inner core can be connected to the Schwarzschild exterior with cosmological constants and any sectional curvat
The Generalized Uncertainty Principle (GUP) has been directly applied to the motion of (macroscopic) test bodies on a given space-time in order to compute corrections to the classical orbits predicted in Newtonian Mechanics or General Relativity. The