ترغب بنشر مسار تعليمي؟ اضغط هنا

Feedforward and feedback influences through distinct frequency bands between two spiking-neuron networks

287   0   0.0 ( 0 )
 نشر من قبل Leonardo Dalla Porta
 تاريخ النشر 2021
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Several studies with brain signals suggested that bottom-up and top-down influences are exerted through distinct frequency bands among visual cortical areas. It has been recently shown that theta and gamma rhythms subserve feedforward, whereas the feedback influence is dominated by the alpha-beta rhythm in primates. A few theoretical models for reproducing these effects have been proposed so far. Here we show that a simple but biophysically plausible two-network motif composed of spiking-neuron models and chemical synapses can exhibit feedforward and feedback influences through distinct frequency bands. Differently from previous studies, this kind of model allows us to study directed influences not only at the population level, by using a proxy for the local field potential, but also at the cellular level, by using the neuronal spiking series.



قيم البحث

اقرأ أيضاً

The abundant recurrent horizontal and feedback connections in the primate visual cortex are thought to play an important role in bringing global and semantic contextual information to early visual areas during perceptual inference, helping to resolve local ambiguity and fill in missing details. In this study, we find that introducing feedback loops and horizontal recurrent connections to a deep convolution neural network (VGG16) allows the network to become more robust against noise and occlusion during inference, even in the initial feedforward pass. This suggests that recurrent feedback and contextual modulation transform the feedforward representations of the network in a meaningful and interesting way. We study the population codes of neurons in the network, before and after learning with feedback, and find that learning with feedback yielded an increase in discriminability (measured by d-prime) between the different object classes in the population codes of the neurons in the feedforward path, even at the earliest layer that receives feedback. We find that recurrent feedback, by injecting top-down semantic meaning to the population activities, helps the network learn better feedforward paths to robustly map noisy image patches to the latent representations corresponding to important visual concepts of each object class, resulting in greater robustness of the network against noises and occlusion as well as better fine-grained recognition.
A main concern in cognitive neuroscience is to decode the overt neural spike train observations and infer latent representations under neural circuits. However, traditional methods entail strong prior on network structure and hardly meet the demand f or real spike data. Here we propose a novel neural network approach called Neuron Activation Network that extracts neural information explicitly from single trial neuron population spike trains. Our proposed method consists of a spatiotemporal learning procedure on sensory environment and a message passing mechanism on population graph, followed by a neuron activation process in a recursive fashion. Our model is aimed to reconstruct neuron information while inferring representations of neuron spiking states. We apply our model to retinal ganglion cells and the experimental results suggest that our model holds a more potent capability in generating neural spike sequences with high fidelity than the state-of-the-art methods, as well as being more expressive and having potential to disclose latent spiking mechanism. The source code will be released with the final paper.
Recently, we put forwarded a redox molecular hypothesis involving the natural biophysical substrate of visual perception and imagery. Here, we explicitly propose that the feedback and feedforward iterative operation processes can be interpreted in te rms of a homunculus looking at the biophysical picture in our brain during visual imagery. We further propose that the brain can use both picture-like and language-like representation processes. In our interpretation, visualization (imagery) is a special kind of representation i.e., visual imagery requires a peculiar inherent biophysical (picture-like) mechanism. We also conjecture that the evolution of higher levels of complexity made the biophysical picture representation of the external visual world possible by controlled redox and bioluminescent nonlinear (iterative) biochemical reactions in the V1 and V2 areas during visual imagery. Our proposal deals only with the primary level of visual representation (i.e. perceived scene).
As the limits of traditional von Neumann computing come into view, the brains ability to communicate vast quantities of information using low-power spikes has become an increasing source of inspiration for alternative architectures. Key to the succes s of these largescale neural networks is a power-efficient spiking element that is scalable and easily interfaced with traditional control electronics. In this work, we present a spiking element fabricated from superconducting nanowires that has pulse energies on the order of ~10 aJ. We demonstrate that the device reproduces essential characteristics of biological neurons, such as a refractory period and a firing threshold. Through simulations using experimentally measured device parameters, we show how nanowire-based networks may be used for inference in image recognition, and that the probabilistic nature of nanowire switching may be exploited for modeling biological processes and for applications that rely on stochasticity.
Feedforward networks (FFN) are ubiquitous structures in neural systems and have been studied to understand mechanisms of reliable signal and information transmission. In many FFNs, neurons in one layer have intrinsic properties that are distinct from those in their pre-/postsynaptic layers, but how this affects network-level information processing remains unexplored. Here we show that layer-to-layer heterogeneity arising from lamina-specific cellular properties facilitates signal and information transmission in FFNs. Specifically, we found that signal transformations, made by each layer of neurons on an input-driven spike signal, demodulate signal distortions introduced by preceding layers. This mechanism boosts information transfer carried by a propagating spike signal and thereby supports reliable spike signal and information transmission in a deep FFN. Our study suggests that distinct cell types in neural circuits, performing different computational functions, facilitate information processing on the whole.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا