ترغب بنشر مسار تعليمي؟ اضغط هنا

Thompson Sampling with a Mixture Prior

427   0   0.0 ( 0 )
 نشر من قبل Joey Hong
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study Thompson sampling (TS) in online decision-making problems where the uncertain environment is sampled from a mixture distribution. This is relevant to multi-task settings, where a learning agent is faced with different classes of problems. We incorporate this structure in a natural way by initializing TS with a mixture prior -- dubbed MixTS -- and develop a novel, general technique for analyzing the regret of TS with such priors. We apply this technique to derive Bayes regret bounds for MixTS in both linear bandits and tabular Markov decision processes (MDPs). Our regret bounds reflect the structure of the problem and depend on the number of components and confidence width of each component of the prior. Finally, we demonstrate the empirical effectiveness of MixTS in both synthetic and real-world experiments.



قيم البحث

اقرأ أيضاً

How can we make use of information parallelism in online decision making problems while efficiently balancing the exploration-exploitation trade-off? In this paper, we introduce a batch Thompson Sampling framework for two canonical online decision ma king problems, namely, stochastic multi-arm bandit and linear contextual bandit with finitely many arms. Over a time horizon $T$, our textit{batch} Thompson Sampling policy achieves the same (asymptotic) regret bound of a fully sequential one while carrying out only $O(log T)$ batch queries. To achieve this exponential reduction, i.e., reducing the number of interactions from $T$ to $O(log T)$, our batch policy dynamically determines the duration of each batch in order to balance the exploration-exploitation trade-off. We also demonstrate experimentally that dynamic batch allocation dramatically outperforms natural baselines such as static batch allocations.
Recent advances in contextual bandit optimization and reinforcement learning have garnered interest in applying these methods to real-world sequential decision making problems. Real-world applications frequently have constraints with respect to a cur rently deployed policy. Many of the existing constraint-aware algorithms consider problems with a single objective (the reward) and a constraint on the reward with respect to a baseline policy. However, many important applications involve multiple competing objectives and auxiliary constraints. In this paper, we propose a novel Thompson sampling algorithm for multi-outcome contextual bandit problems with auxiliary constraints. We empirically evaluate our algorithm on a synthetic problem. Lastly, we apply our method to a real world video transcoding problem and provide a practical way for navigating the trade-off between safety and performance using Bayesian optimization.
We study the use of policy gradient algorithms to optimize over a class of generalized Thompson sampling policies. Our central insight is to view the posterior parameter sampled by Thompson sampling as a kind of pseudo-action. Policy gradient methods can then be tractably applied to search over a class of sampling policies, which determine a probability distribution over pseudo-actions (i.e., sampled parameters) as a function of observed data. We also propose and compare policy gradient estimators that are specialized to Bayesian bandit problems. Numerical experiments demonstrate that direct policy search on top of Thompson sampling automatically corrects for some of the algorithms known shortcomings and offers meaningful improvements even in long horizon problems where standard Thompson sampling is extremely effective.
120 - Long Yang , Zhao Li , Zehong Hu 2021
In this paper, we propose a Thompson Sampling algorithm for emph{unimodal} bandits, where the expected reward is unimodal over the partially ordered arms. To exploit the unimodal structure better, at each step, instead of exploration from the entire decision space, our algorithm makes decision according to posterior distribution only in the neighborhood of the arm that has the highest empirical mean estimate. We theoretically prove that, for Bernoulli rewards, the regret of our algorithm reaches the lower bound of unimodal bandits, thus it is asymptotically optimal. For Gaussian rewards, the regret of our algorithm is $mathcal{O}(log T)$, which is far better than standard Thompson Sampling algorithms. Extensive experiments demonstrate the effectiveness of the proposed algorithm on both synthetic data sets and the real-world applications.
Thompson Sampling is one of the oldest heuristics for multi-armed bandit problems. It is a randomized algorithm based on Bayesian ideas, and has recently generated significant interest after several studies demonstrated it to have better empirical pe rformance compared to the state-of-the-art methods. However, many questions regarding its theoretical performance remained open. In this paper, we design and analyze a generalization of Thompson Sampling algorithm for the stochastic contextual multi-armed bandit problem with linear payoff functions, when the contexts are provided by an adaptive adversary. This is among the most important and widely studi

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا