ﻻ يوجد ملخص باللغة العربية
A neoclassically optimized compact stellarator with simple coils has been designed. The magnetic field of the new stellarator is generated by only four planar coils including two interlocking coils of elliptical shape and two circular poloidal field coils. The interlocking coil topology is the same as that of the Columbia Non-neutral Torus (CNT). The new configuration was obtained by minimizing the effective helical ripple directly via the shape of the two interlocking coils. The optimized compact stellarator has very low effective ripple in the plasma core implying excellent neoclassical confinement. This is confirmed by the results of the drift-kinetic code SFINCS showing that the particle diffusion coefficient of the new configuration is one order of magnitude lower than CNTs.
Magnetic confinement devices for nuclear fusion can be large and expensive. Compact stellarators are promising candidates for costreduction, but introduce new difficulties: confinement in smaller volumes requires higher magnetic field, which calls fo
The condition of omnigenity is investigated, and applied to the near-axis expansion of Garren and Boozer (1991a). Due in part to the particular analyticity requirements of the near-axis expansion, we find that, excluding quasi-symmetric solutions, on
We consider a problem relating to magnetic confinement devices known as stellarators. Plasma is confined by magnetic fields generated by current-carrying coils, and here we investigate how closely to the plasma they need to be positioned. Current-car
The nonlinear gyrokinetic code GS2 has been extended to treat non-axisymmetric stellarator geometry. Electromagnetic perturbations and multiple trapped particle regions are allowed. Here, linear, collisionless, electrostatic simulations of the quasi-
One metric for comparing confinement properties of different magnetic fusion energy configurations is the linear critical gradient of drift wave modes. The critical gradient scale length determines the ratio of the core to pedestal temperature when a