ﻻ يوجد ملخص باللغة العربية
The nonlinear gyrokinetic code GS2 has been extended to treat non-axisymmetric stellarator geometry. Electromagnetic perturbations and multiple trapped particle regions are allowed. Here, linear, collisionless, electrostatic simulations of the quasi-axisymmetric, three-field period National Compact Stellarator Experiment (NCSX) design QAS3-C82 have been successfully benchmarked against the eigenvalue code FULL. Quantitatively, the linear stability calculations of GS2 and FULL agree to within ~10%.
An analytic equilibrium, the Toroidal Bessel Function Model, is used in conjunction with the gyrokinetic code GYRO to investigate the nature of microinstabilities in a reversed field pinch (RFP) plasma. The effect of the normalized electron plasma pr
A linear gyrokinetic particle-in-cell scheme, which is valid for arbitrary perpendicular wavelength $k_perprho_i$ and includes the parallel dynamic along the field line, is developed to study the local electrostatic drift modes in point and ring dipo
The capability to model the nonlinear magnetohydrodynamic (MHD) evolution of stellarator plasmas is developed by extending the M3D-$C^1$ code to allow non-axisymmetric domain geometry. We introduce a set of logical coordinates, in which the computati
We study the effect of turbulent transport in different magnetic configurations of the Weldenstein 7-X stellarator. In particular, we performed direct numerical simulations with the global gyrokinetic code GENE-3D, modeling the behavior of Ion Temper
The quasilinear particle flux arising from gyrokinetic instabilities is calculated in the electrostatic and collisionless approximation, keeping the geometry of the magnetic field arbitrary. In particular, the flux of electrons and heavy impurity ion