ﻻ يوجد ملخص باللغة العربية
Continuous-time stochastic processes play an important role in the description of random phenomena, it is therefore of prime interest to study particular variables depending on their paths, like stopping time for example. One approach consists in pointing out explicit expressions of the probability distributions, an other approach is rather based on the numerical generation of the random variables. We propose an algorithm in order to generate the first passage time through a given level of a one-dimensional jump diffusion. This process satisfies a stochastic differential equation driven by a Brownian motion and subject to random shocks characterized by an independent Poisson process. Our algorithm belongs to the family of rejection sampling procedures, also called exact simulation in this context: the outcome of the algorithm and the stopping time under consideration are identically distributed. It is based on both the exact simulation of the diffusion at a given time and on the exact simulation of first passage time for continuous diffusions. It is therefore based on an extension of the algorithm introduced by Herrmann and Zucca [16] in the continuous framework. The challenge here is to generate the exact position of a continuous diffusion conditionally to the fact that the given level has not been reached before. We present the construction of the algorithm and give numerical illustrations, conditions on the recurrence of jump diffusions are also discussed.
Since diffusion processes arise in so many different fields, efficient tech-nics for the simulation of sample paths, like discretization schemes, represent crucial tools in applied probability. Such methods permit to obtain approximations of the firs
Fractal phenomena may be widely observed in a great number of complex systems. In this paper, we revisit the well-known Vicsek fractal, and study some of its structural properties for purpose of understanding how the underlying topology influences it
The first-passage-time problem for a Brownian motion with alternating infinitesimal moments through a constant boundary is considered under the assumption that the time intervals between consecutive changes of these moments are described by an altern
This work develops asymptotic properties of a class of switching jump diffusion processes. The processes under consideration may be viewed as a number of jump diffusion processes modulated by a random switching mechanism. The underlying processes fea
We study the time constant $mu(e_{1})$ in first passage percolation on $mathbb Z^{d}$ as a function of the dimension. We prove that if the passage times have finite mean, $$lim_{d to infty} frac{mu(e_{1}) d}{log d} = frac{1}{2a},$$ where $a in [0,inf