ترغب بنشر مسار تعليمي؟ اضغط هنا

Swarm Intelligence for Self-Organized Clustering

261   0   0.0 ( 0 )
 نشر من قبل Michael Thrun PhD
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Algorithms implementing populations of agents which interact with one another and sense their environment may exhibit emergent behavior such as self-organization and swarm intelligence. Here a swarm system, called Databionic swarm (DBS), is introduced which is able to adapt itself to structures of high-dimensional data characterized by distance and/or density-based structures in the data space. By exploiting the interrelations of swarm intelligence, self-organization and emergence, DBS serves as an alternative approach to the optimization of a global objective function in the task of clustering. The swarm omits the usage of a global objective function and is parameter-free because it searches for the Nash equilibrium during its annealing process. To our knowledge, DBS is the first swarm combining these approaches. Its clustering can outperform common clustering methods such as K-means, PAM, single linkage, spectral clustering, model-based clustering, and Ward, if no prior knowledge about the data is available. A central problem in clustering is the correct estimation of the number of clusters. This is addressed by a DBS visualization called topographic map which allows assessing the number of clusters. It is known that all clustering algorithms construct clusters, irrespective of the data set contains clusters or not. In contrast to most other clustering algorithms, the topographic map identifies, that clustering of the data is meaningless if the data contains no (natural) clusters. The performance of DBS is demonstrated on a set of benchmark data, which are constructed to pose difficult clustering problems and in two real-world applications.

قيم البحث

اقرأ أيضاً

Swarm intelligence is the collective behavior emerging in systems with locally interacting components. Because of their self-organization capabilities, swarm-based systems show essential properties for handling real-world problems such as robustness, scalability, and flexibility. Yet, we do not know why swarm-based algorithms work well and neither we can compare the different approaches in the literature. The lack of a common framework capable of characterizing these several swarm-based algorithms, transcending their particularities, has led to a stream of publications inspired by different aspects of nature without a systematic comparison over existing approaches. Here, we address this gap by introducing a network-based framework---the interaction network---to examine computational swarm-based systems via the optics of the social dynamics of such interaction network; a clear example of network science being applied to bring further clarity to a complicated field within artificial intelligence. We discuss the social interactions of four well-known swarm-based algorithms and provide an in-depth case study of the Particle Swarm Optimization. The interaction network enables researchers to study swarm algorithms as systems, removing the algorithm particularities from the analyses while focusing on the structure of the social interactions.
This paper introduces AdaSwarm, a novel gradient-free optimizer which has similar or even better performance than the Adam optimizer adopted in neural networks. In order to support our proposed AdaSwarm, a novel Exponentially weighted Momentum Partic le Swarm Optimizer (EMPSO), is proposed. The ability of AdaSwarm to tackle optimization problems is attributed to its capability to perform good gradient approximations. We show that, the gradient of any function, differentiable or not, can be approximated by using the parameters of EMPSO. This is a novel technique to simulate GD which lies at the boundary between numerical methods and swarm intelligence. Mathematical proofs of the gradient approximation produced are also provided. AdaSwarm competes closely with several state-of-the-art (SOTA) optimizers. We also show that AdaSwarm is able to handle a variety of loss functions during backpropagation, including the maximum absolute error (MAE).
As the convolutional neural network (CNN) gets deeper and wider in recent years, the requirements for the amount of data and hardware resources have gradually increased. Meanwhile, CNN also reveals salient redundancy in several tasks. The existing ma gnitude-based pruning methods are efficient, but the performance of the compressed network is unpredictable. While the accuracy loss after pruning based on the structure sensitivity is relatively slight, the process is time-consuming and the algorithm complexity is notable. In this article, we propose a novel automatic channel pruning method (ACP). Specifically, we firstly perform layer-wise channel clustering via the similarity of the feature maps to perform preliminary pruning on the network. Then a population initialization method is introduced to transform the pruned structure into a candidate population. Finally, we conduct searching and optimizing iteratively based on the particle swarm optimization (PSO) to find the optimal compressed structure. The compact network is then retrained to mitigate the accuracy loss from pruning. Our method is evaluated against several state-of-the-art CNNs on three different classification datasets CIFAR-10/100 and ILSVRC-2012. On the ILSVRC-2012, when removing 64.36% parameters and 63.34% floating-point operations (FLOPs) of ResNet-50, the Top-1 and Top-5 accuracy drop are less than 0.9%. Moreover, we demonstrate that without harming overall performance it is possible to compress SSD by more than 50% on the target detection dataset PASCAL VOC. It further verifies that the proposed method can also be applied to other CNNs and application scenarios.
Can reproduction alone in the context of survival produce intelligence in our machines? In this work, self-replication is explored as a mechanism for the emergence of intelligent behavior in modern learning environments. By focusing purely on surviva l, while undergoing natural selection, evolved organisms are shown to produce meaningful, complex, and intelligent behavior, demonstrating creative solutions to challenging problems without any notion of reward or objectives. Atari and robotic learning environments are re-defined in terms of natural selection, and the behavior which emerged in self-replicating organisms during these experiments is described in detail.
Artificial neural networks (ANNs), while exceptionally useful for classification, are vulnerable to misdirection. Small amounts of noise can significantly affect their ability to correctly complete a task. Instead of generalizing concepts, ANNs seem to focus on surface statistical regularities in a given task. Here we compare how recurrent artificial neural networks, long short-term memory units, and Markov Brains sense and remember their environments. We show that information in Markov Brains is localized and sparsely distributed, while the other neural network substrates smear information about the environment across all nodes, which makes them vulnerable to noise.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا