ﻻ يوجد ملخص باللغة العربية
While large-scale pretrained language models have obtained impressive results when fine-tuned on a wide variety of tasks, they still often suffer from overfitting in low-resource scenarios. Since such models are general-purpose feature extractors, many of these features are inevitably irrelevant for a given target task. We propose to use Variational Information Bottleneck (VIB) to suppress irrelevant features when fine-tuning on low-resource target tasks, and show that our method successfully reduces overfitting. Moreover, we show that our VIB model finds sentence representations that are more robust to biases in natural language inference datasets, and thereby obtains better generalization to out-of-domain datasets. Evaluation on seven low-resource datasets in different tasks shows that our method significantly improves transfer learning in low-resource scenarios, surpassing prior work. Moreover, it improves generalization on 13 out of 15 out-of-domain natural language inference benchmarks. Our code is publicly available in https://github.com/rabeehk/vibert.
Large-scale deep neural networks (DNNs) such as convolutional neural networks (CNNs) have achieved impressive performance in audio classification for their powerful capacity and strong generalization ability. However, when training a DNN model on low
Fine-tuning is known to improve NLP models by adapting an initial model trained on more plentiful but less domain-salient examples to data in a target domain. Such domain adaptation is typically done using one stage of fine-tuning. We demonstrate tha
Zero-resource named entity recognition (NER) severely suffers from data scarcity in a specific domain or language. Most studies on zero-resource NER transfer knowledge from various data by fine-tuning on different auxiliary tasks. However, how to pro
Biomedical text tagging systems are plagued by the dearth of labeled training data. There have been recent attempts at using pre-trained encoders to deal with this issue. Pre-trained encoder provides representation of the input text which is then fed
Information bottleneck (IB) principle [1] has become an important element in information-theoretic analysis of deep models. Many state-of-the-art generative models of both Variational Autoencoder (VAE) [2; 3] and Generative Adversarial Networks (GAN)