ترغب بنشر مسار تعليمي؟ اضغط هنا

Unsupervised Video Person Re-identification via Noise and Hard frame Aware Clustering

113   0   0.0 ( 0 )
 نشر من قبل Xin Xu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Unsupervised video-based person re-identification (re-ID) methods extract richer features from video tracklets than image-based ones. The state-of-the-art methods utilize clustering to obtain pseudo-labels and train the models iteratively. However, they underestimate the influence of two kinds of frames in the tracklet: 1) noise frames caused by detection errors or heavy occlusions exist in the tracklet, which may be allocated with unreliable labels during clustering; 2) the tracklet also contains hard frames caused by pose changes or partial occlusions, which are difficult to distinguish but informative. This paper proposes a Noise and Hard frame Aware Clustering (NHAC) method. NHAC consists of a graph trimming module and a node re-sampling module. The graph trimming module obtains stable graphs by removing noise frame nodes to improve the clustering accuracy. The node re-sampling module enhances the training of hard frame nodes to learn rich tracklet information. Experiments conducted on two video-based datasets demonstrate the effectiveness of the proposed NHAC under the unsupervised re-ID setting.



قيم البحث

اقرأ أيضاً

Unsupervised person re-identification (re-ID) has become an important topic due to its potential to resolve the scalability problem of supervised re-ID models. However, existing methods simply utilize pseudo labels from clustering for supervision and thus have not yet fully explored the semantic information in data itself, which limits representation capabilities of learned models. To address this problem, we design a pretext task for unsupervised re-ID by learning visual consistency from still images and temporal consistency during training process, such that the clustering network can separate the images into semantic clusters automatically. Specifically, the pretext task learns semantically meaningful representations by maximizing the agreement between two encoded views of the same image via a consistency loss in latent space. Meanwhile, we optimize the model by grouping the two encoded views into same cluster, thus enhancing the visual consistency between views. Experiments on Market-1501, DukeMTMC-reID and MSMT17 datasets demonstrate that our proposed approach outperforms the state-of-the-art methods by large margins.
Most existing person re-identification (ReID) methods rely only on the spatial appearance information from either one or multiple person images, whilst ignore the space-time cues readily available in video or image-sequence data. Moreover, they often assume the availability of exhaustively labelled cross-view pairwise data for every camera pair, making them non-scalable to ReID applications in real-world large scale camera networks. In this work, we introduce a novel video based person ReID method capable of accurately matching people across views from arbitrary unaligned image-sequences without any labelled pairwise data. Specifically, we introduce a new space-time person representation by encoding multiple granularities of spatio-temporal dynamics in form of time series. Moreover, a Time Shift Dynamic Time Warping (TS-DTW) model is derived for performing automatically alignment whilst achieving data selection and matching between inherently inaccurate and incomplete sequences in a unified way. We further extend the TS-DTW model for accommodating multiple feature-sequences of an image-sequence in order to fuse information from different descriptions. Crucially, this model does not require pairwise labelled training data (i.e. unsupervised) therefore readily scalable to large scale camera networks of arbitrary camera pairs without the need for exhaustive data annotation for every camera pair. We show the effectiveness and advantages of the proposed method by extensive comparisons with related state-of-the-art approaches using two benchmarking ReID datasets, PRID2011 and iLIDS-VID.
Video-based person re-identification (Re-ID) is an important computer vision task. The batch-hard triplet loss frequently used in video-based person Re-ID suffers from the Distance Variance among Different Positives (DVDP) problem. In this paper, we address this issue by introducing a new metric learning method called Attribute-aware Identity-hard Triplet Loss (AITL), which reduces the intra-class variation among positive samples via calculating attribute distance. To achieve a complete model of video-based person Re-ID, a multi-task framework with Attribute-driven Spatio-Temporal Attention (ASTA) mechanism is also proposed. Extensive experiments on MARS and DukeMTMC-VID datasets shows that both the AITL and ASTA are very effective. Enhanced by them, even a simple light-weighted video-based person Re-ID baseline can outperform existing state-of-the-art approaches. The codes has been published on https://github.com/yuange250/Video-based-person-ReID-with-Attribute-information.
The recent person re-identification research has achieved great success by learning from a large number of labeled person images. On the other hand, the learned models often experience significant performance drops when applied to images collected in a different environment. Unsupervised domain adaptation (UDA) has been investigated to mitigate this constraint, but most existing systems adapt images at pixel level only and ignore obvious discrepancies at spatial level. This paper presents an innovative UDA-based person re-identification network that is capable of adapting images at both spatial and pixel levels simultaneously. A novel disentangled cycle-consistency loss is designed which guides the learning of spatial-level and pixel-level adaptation in a collaborative manner. In addition, a novel multi-modal mechanism is incorporated which is capable of generating images of different geometry views and augmenting training images effectively. Extensive experiments over a number of public datasets show that the proposed UDA network achieves superior person re-identification performance as compared with the state-of-the-art.
This paper tackles the purely unsupervised person re-identification (Re-ID) problem that requires no annotations. Some previous methods adopt clustering techniques to generate pseudo labels and use the produced labels to train Re-ID models progressiv ely. These methods are relatively simple but effective. However, most clustering-based methods take each cluster as a pseudo identity class, neglecting the large intra-ID variance caused mainly by the change of camera views. To address this issue, we propose to split each single cluster into multiple proxies and each proxy represents the instances coming from the same camera. These camera-aware proxies enable us to deal with large intra-ID variance and generate more reliable pseudo labels for learning. Based on the camera-aware proxies, we design both intra- and inter-camera contrastive learning components for our Re-ID model to effectively learn the ID discrimination ability within and across cameras. Meanwhile, a proxy-balanced sampling strategy is also designed, which facilitates our learning further. Extensive experiments on three large-scale Re-ID datasets show that our proposed approach outperforms most unsupervised methods by a significant margin. Especially, on the challenging MSMT17 dataset, we gain $14.3%$ Rank-1 and $10.2%$ mAP improvements when compared to the second place. Code is available at: texttt{https://github.com/Terminator8758/CAP-master}.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا