ترغب بنشر مسار تعليمي؟ اضغط هنا

Attribute-aware Identity-hard Triplet Loss for Video-based Person Re-identification

110   0   0.0 ( 0 )
 نشر من قبل Zhiyuan Chen
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Video-based person re-identification (Re-ID) is an important computer vision task. The batch-hard triplet loss frequently used in video-based person Re-ID suffers from the Distance Variance among Different Positives (DVDP) problem. In this paper, we address this issue by introducing a new metric learning method called Attribute-aware Identity-hard Triplet Loss (AITL), which reduces the intra-class variation among positive samples via calculating attribute distance. To achieve a complete model of video-based person Re-ID, a multi-task framework with Attribute-driven Spatio-Temporal Attention (ASTA) mechanism is also proposed. Extensive experiments on MARS and DukeMTMC-VID datasets shows that both the AITL and ASTA are very effective. Enhanced by them, even a simple light-weighted video-based person Re-ID baseline can outperform existing state-of-the-art approaches. The codes has been published on https://github.com/yuange250/Video-based-person-ReID-with-Attribute-information.

قيم البحث

اقرأ أيضاً

Modern video person re-identification (re-ID) machines are often trained using a metric learning approach, supervised by a triplet loss. The triplet loss used in video re-ID is usually based on so-called clip features, each aggregated from a few fram e features. In this paper, we propose to model the video clip as a set and instead study the distance between sets in the corresponding triplet loss. In contrast to the distance between clip representations, the distance between clip sets considers the pair-wise similarity of each element (i.e., frame representation) between two sets. This allows the network to directly optimize the feature representation at a frame level. Apart from the commonly-used set distance metrics (e.g., ordinary distance and Hausdorff distance), we further propose a hybrid distance metric, tailored for the set-aware triplet loss. Also, we propose a hard positive set construction strategy using the learned class prototypes in a batch. Our proposed method achieves state-of-the-art results across several standard benchmarks, demonstrating the advantages of the proposed method.
112 - Pengyu Xie , Xin Xu , Zheng Wang 2021
Unsupervised video-based person re-identification (re-ID) methods extract richer features from video tracklets than image-based ones. The state-of-the-art methods utilize clustering to obtain pseudo-labels and train the models iteratively. However, t hey underestimate the influence of two kinds of frames in the tracklet: 1) noise frames caused by detection errors or heavy occlusions exist in the tracklet, which may be allocated with unreliable labels during clustering; 2) the tracklet also contains hard frames caused by pose changes or partial occlusions, which are difficult to distinguish but informative. This paper proposes a Noise and Hard frame Aware Clustering (NHAC) method. NHAC consists of a graph trimming module and a node re-sampling module. The graph trimming module obtains stable graphs by removing noise frame nodes to improve the clustering accuracy. The node re-sampling module enhances the training of hard frame nodes to learn rich tracklet information. Experiments conducted on two video-based datasets demonstrate the effectiveness of the proposed NHAC under the unsupervised re-ID setting.
In the past few years, the field of computer vision has gone through a revolution fueled mainly by the advent of large datasets and the adoption of deep convolutional neural networks for end-to-end learning. The person re-identification subfield is n o exception to this. Unfortunately, a prevailing belief in the community seems to be that the triplet loss is inferior to using surrogate losses (classification, verification) followed by a separate metric learning step. We show that, for models trained from scratch as well as pretrained ones, using a variant of the triplet loss to perform end-to-end deep metric learning outperforms most other published methods by a large margin.
Recently, the Transformer module has been transplanted from natural language processing to computer vision. This paper applies the Transformer to video-based person re-identification, where the key issue is to extract the discriminative information f rom a tracklet. We show that, despite the strong learning ability, the vanilla Transformer suffers from an increased risk of over-fitting, arguably due to a large number of attention parameters and insufficient training data. To solve this problem, we propose a novel pipeline where the model is pre-trained on a set of synthesized video data and then transferred to the downstream domains with the perception-constrained Spatiotemporal Transformer (STT) module and Global Transformer (GT) module. The derived algorithm achieves significant accuracy gain on three popular video-based person re-identification benchmarks, MARS, DukeMTMC-VideoReID, and LS-VID, especially when the training and testing data are from different domains. More importantly, our research sheds light on the application of the Transformer on highly-structured visual data.
Although great progress in supervised person re-identification (Re-ID) has been made recently, due to the viewpoint variation of a person, Re-ID remains a massive visual challenge. Most existing viewpoint-based person Re-ID methods project images fro m each viewpoint into separated and unrelated sub-feature spaces. They only model the identity-level distribution inside an individual viewpoint but ignore the underlying relationship between different viewpoints. To address this problem, we propose a novel approach, called textit{Viewpoint-Aware Loss with Angular Regularization }(textbf{VA-reID}). Instead of one subspace for each viewpoint, our method projects the feature from different viewpoints into a unified hypersphere and effectively models the feature distribution on both the identity-level and the viewpoint-level. In addition, rather than modeling different viewpoints as hard labels used for conventional viewpoint classification, we introduce viewpoint-aware adaptive label smoothing regularization (VALSR) that assigns the adaptive soft label to feature representation. VALSR can effectively solve the ambiguity of the viewpoint cluster label assignment. Extensive experiments on the Market1501 and DukeMTMC-reID datasets demonstrated that our method outperforms the state-of-the-art supervised Re-ID methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا