ترغب بنشر مسار تعليمي؟ اضغط هنا

An adaptive Origin-Destination flows cluster-detecting method to identify urban mobility trends

95   0   0.0 ( 0 )
 نشر من قبل Mengyuan Fang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Origin-Destination (OD) flow, as an abstract representation of the object`s movement or interaction, has been used to reveal the urban mobility and human-land interaction pattern. As an important spatial analysis approach, the clustering methods of point events have been extended to OD flows to identify the dominant trends and spatial structures of urban mobility. However, the existing methods for OD flow cluster-detecting are limited both in specific spatial scale and the uncertain result due to different parameters setting, which is difficult for complicated OD flows clustering under spatial heterogeneity. To address these limitations, in this paper, we proposed a novel OD flows cluster-detecting method based on the OPTICS algorithm which can identify OD flow clusters with various aggregation scales. The method can adaptively determine parameter value from the dataset without prior knowledge and artificial intervention. Experiments indicated that our method outperformed three state-of-the-art methods with more accurate and complete of clusters and less noise. As a case study, our method is applied to identify the potential routes for public transport service settings by detecting OD flow clusters within urban travel data.



قيم البحث

اقرأ أيضاً

89 - Zidong Fang , Hua Shu , Ci Song 2021
The movement of humans and goods in cities can be represented by constrained flow, which is defined as the movement of objects between origin and destination in road networks. Flow aggregation, namely origins and destinations aggregated simultaneousl y, is one of the most common patterns, say the aggregated origin-to-destination flows between two transport hubs may indicate the great traffic demand between two sites. Developing a clustering method for constrained flows is crucial for determining urban flow aggregation. Among existing methods about identifying flow aggregation, L-function of flows is the major one. Nevertheless, this method depends on the aggregation scale, the key parameter detected by Euclidean L-function, it does not adapt to road network. The extracted aggregation may be overestimated and dispersed. Therefore, we propose a clustering method based on L-function of Manhattan space, which consists of three major steps. The first is to detect aggregation scales by Manhattan L-function. The second is to determine core flows possessing highest local L-function values at different scales. The final step is to take the intersection of core flows neighbourhoods, the extent of which depends on corresponding scale. By setting the number of core flows, we could concentrate the aggregation and thus highlight Aggregation Artery Architecture (AAA), which depicts road sections that contain the projection of key flow cluster on the road networks. Experiment using taxi flows showed that AAA could clarify resident movement type of identified aggregated flows. Our method also helps selecting locations for distribution sites, thereby supporting accurate analysis of urban interactions.
332 - Bin Jiang , Xintao Liu 2009
Based on the concepts of isovists and medial axes, we developed a set of algorithms that can automatically generate axial lines for representing individual linearly stretched parts of open space of an urban environment. Open space is the space betwee n buildings, where people can freely move around. The generation of the axial lines has been a key aspect of space syntax research, conventionally relying on hand-drawn axial lines of an urban environment, often called axial map, for urban morphological analysis. Although various attempts have been made towards an automatic solution, few of them can produce the axial map that consists of the least number of longest visibility lines, and none of them really works for different urban environments. Our algorithms provide a better solution than existing ones. Throughout this paper, we have also argued and demonstrated that the axial lines constitute a true skeleton, superior to medial axes, in capturing what we perceive about the urban environment. Keywords: Visibility, space syntax, topological analysis, medial axes, axial lines, isovists
With the increasing adoption of Automatic Vehicle Location (AVL) and Automatic Passenger Count (APC) technologies by transit agencies, a massive amount of time-stamped and location-based passenger boarding and alighting count data can be collected on a continuous basis. The availability of such large-scale transit data offers new opportunities to produce estimates for Origin-Destination (O-D) flows, helping inform transportation planning and transit management. However, the state-of-the-art methodologies for AVL/APC data analysis mostly tackle the O-D flow estimation problem within routes and barely infer the transfer activities across the entire transit network. This paper proposes three optimization models to identify transfers and approximate network-level O-D flows by minimizing the deviations between estimated and observed proportions or counts of transferring passengers: A Quadratic Integer Program (QIP), a feasible rounding procedure for the Quadratic Convex Programming (QCP) relaxation of the QIP, and an Integer Program (IP). The inputs of the models are readily available by applying the various route-level flow estimation algorithms to the automatically collected AVL/APC data and the output of the models is a network O-D estimation at varying geographical resolutions. The optimization models were evaluated on a case study for Ann Arbor-Ypsilanti area in Michigan. The IP model outperforms the QCP approach in terms of accuracy and remains tractable from an efficiency standpoint, contrary to the QIP. Its estimated O-D matrix achieves an R-Squared metric of 95.57% at the Traffic Analysis Zone level and 92.39% at the stop level, compared to the ground-truth estimates inferred from the state-of-practice trip-chaining methods.
Assessing the resilience of a road network is instrumental to improve existing infrastructures and design new ones. Here we apply the optimal path crack model (OPC) to investigate the mobility of road networks and propose a new proxy for resilience o f urban mobility. In contrast to static approaches, the OPC accounts for the dynamics of rerouting as a response to traffic jams. Precisely, one simulates a sequence of failures (cracks) at the most vulnerable segments of the optimal origin-destination paths that are capable to collapse the system. Our results with synthetic and real road networks reveal that their levels of disorder, fractions of unidirectional segments and spatial correlations can drastically affect the vulnerability to traffic congestion. By applying the OPC to downtown Boston and Manhattan, we found that Boston is significantly more vulnerable than Manhattan. This is compatible with the fact that Boston heads the list of American metropolitan areas with the highest average time waste in traffic. Moreover, our analysis discloses that the origin of this difference comes from the intrinsic spatial correlations of each road network. Finally, we argue that, due to their global influence, the most important cracks identified with OPC can be used to pinpoint potential small rerouting and structural changes in road networks that are capable to substantially improve urban mobility.
The identification of urban mobility patterns is very important for predicting and controlling spatial events. In this study, we analyzed millions of geographical check-ins crawled from a leading Chinese location-based social networking service (Jiep ang.com), which contains demographic information that facilitates group-specific studies. We determined the distinct mobility patterns of natives and non-natives in all five large cities that we considered. We used a mixed method to assign different algorithms to natives and non-natives, which greatly improved the accuracy of location prediction compared with the basic algorithms. We also propose so-called indigenization coefficients to quantify the extent to which an individual behaves like a native, which depends only on their check-in behavior, rather than requiring demographic information. Surprisingly, the hybrid algorithm weighted using the indigenization coefficients outperformed a mixed algorithm that used additional demographic information, suggesting the advantage of behavioral data in characterizing individual mobility compared with the demographic information. The present location prediction algorithms can find applications in urban planning, traffic forecasting, mobile recommendation, and so on.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا