ﻻ يوجد ملخص باللغة العربية
Layered compounds AMnBi2 (A=Ca, Sr, Ba, or rare earth element) have been established as Dirac materials. Dirac electrons generated by the two-dimensional (2D) Bi square net in these materials are normally massive due to the presence of a spin-orbital coupling (SOC) induced gap at Dirac nodes. Here we report that the Sb square net in an isostructural compound BaMnSb2 can host nearly massless Dirac fermions. We observed strong Shubnikov-de Haas (SdH) oscillations in this material. From the analyses of the SdH oscillations, we find key signatures of Dirac fermions, including light effective mass (~0.052m0; m0, mass of free electron), high quantum mobility (1280 cm2V-1S-1) and a Pi Berry phase accumulated along cyclotron orbit. Compared with AMnBi2, BaMnSb2 also exhibits much more significant quasi two-dimensional (2D) electronic structure, with the out-of-plane transport showing nonmetallic conduction below 120K and the ratio of the out-of-plane and in-plane resistivity reaching ~670. Additionally, BaMnSb2 also exhibits an antiferromagnetic order with a weak ferromagnetic component. The combination of nearly massless Dirac fermions on quasi-2D planes with a magnetic order makes BaMnSb2 an intriguing platform for seeking novel exotic phenomena of massless Dirac electrons.
The quantum spin Hall insulator (QSHI) state has been demonstrated in two semiconductor systems - HgTe/CdTe quantum wells (QWs) and InAs/GaSb QW bilayers. Unlike the HgTe/CdTe QWs, the inverted band gap in InAs/GaSb QW bilayers does not open at the $
Materials with triply-degenerate nodal points in their low-energy electronic spectrum produce crystalline-symmetry-enforced three-fold fermions, which conceptually lie between the two-fold Weyl and four-fold Dirac fermions. Here we show how a silver-
We study longitudinal electric and thermoelectric transport coefficients of Dirac fermions on a simple lattice model where tuning of a single parameter enables us to change the type of Dirac cones from type-I to type-II. We pay particular attention t
Exotic properties in single or few layers of van der Waals materials carry great promise for applications in nanoscaled electronics, optoelectronics and flexible devices. The established, distinct examples include extremely high mobility and superior
Dirac states hosted by Sb/Bi square nets are known to exist in the layered antiferromagnetic AMnX$_2$ (A = Ca/Sr/Ba/Eu/Yb, X=Sb/Bi) material family the space group to be P4/nmm or I4/mmm. In this paper, we present a comprehensive study of quantum tra