ﻻ يوجد ملخص باللغة العربية
An integrated clinical environment (ICE) enables the connection and coordination of the internet of medical things around the care of patients in hospitals. However, ransomware attacks and their spread on hospital infrastructures, including ICE, are rising. Often the adversaries are targeting multiple hospitals with the same ransomware attacks. These attacks are detected by using machine learning algorithms. But the challenge is devising the anti-ransomware learning mechanisms and services under the following conditions: (1) provide immunity to other hospitals if one of them got the attack, (2) hospitals are usually distributed over geographical locations, and (3) direct data sharing is avoided due to privacy concerns. In this regard, this paper presents a federated distributed integrated clinical environment, aka. FedDICE. FedDICE integrates federated learning (FL), which is privacy-preserving learning, to SDN-oriented security architecture to enable collaborative learning, detection, and mitigation of ransomware attacks. We demonstrate the importance of FedDICE in a collaborative environment with up to four hospitals and four popular ransomware families, namely WannaCry, Petya, BadRabbit, and PowerGhost. Our results find that in both IID and non-IID data setups, FedDICE achieves the centralized baseline performance that needs direct data sharing for detection. However, as a trade-off to data privacy, FedDICE observes overhead in the anti-ransomware model training, e.g., 28x for the logistic regression model. Besides, FedDICE utilizes SDNs dynamic network programmability feature to remove the infected devices in ICE.
The current paper addresses relevant network security vulnerabilities introduced by network devices within the emerging paradigm of Internet of Things (IoT) as well as the urgent need to mitigate the negative effects of some types of Distributed Deni
Critical role of Internet of Things (IoT) in various domains like smart city, healthcare, supply chain and transportation has made them the target of malicious attacks. Past works in this area focused on centralized Intrusion Detection System (IDS),
In this paper, the problem of distributed detection in tree networks in the presence of Byzantines is considered. Closed form expressions for optimal attacking strategies that minimize the miss detection error exponent at the fusion center (FC) are o
We experimentally demonstrate, for the first time, DDoS mitigation of QKD-based networks utilizing a software defined network application. Successful quantum-secured link allocation is achieved after a DDoS attack based on real-time monitoring of quantum parameters
In recent years, data and computing resources are typically distributed in the devices of end users, various regions or organizations. Because of laws or regulations, the distributed data and computing resources cannot be directly shared among differ