ﻻ يوجد ملخص باللغة العربية
We compute the one-loop renormalisation group running of the bosonic Standard Model effective operators to order $v^4/Lambda^4$, with $vsim 246$ GeV being the electroweak scale and $Lambda$ the unknown new physics threshold. We concentrate on the effects triggered by pairs of the leading dimension-six interactions, namely those that can arise at tree level in weakly-coupled ultraviolet completions of the Standard Model. We highlight some interesting consequences, including the interplay between positivity bounds and the form of the anomalous dimensions; the non renormalisation of the $S$ and $U$ parameters; or the importance of radiative corrections to the Higgs potential for the electroweak phase transition. As a byproduct of this work, we provide a complete Green basis of operators involving only the Higgs and derivatives at dimension-eight, comprising 13 redundant interactions.
We present a practical three-step procedure of using the Standard Model effective field theory (SM EFT) to connect ultraviolet (UV) models of new physics with weak scale precision observables. With this procedure, one can interpret precision measurem
We develop the geometric formulation of the Standard Model Effective Field Theory (SMEFT). Using this approach we derive all-orders results in the $sqrt{2 langle H^dagger H rangle}/Lambda$ expansion relevant for studies of electroweak precision and Higgs data.
We study whether higher-dimensional operators in effective field theories, in particular in the Standard Model Effective Field Theory (SMEFT), can source gauge anomalies via the modification of the interactions involved in triangle diagrams. We find
We revisit the effective field theory of the standard model that is extended with sterile neutrinos, $N$. We examine the basis of complete and independent effective operators involving $N$ up to mass dimension seven (dim-7). By employing equations of
If the Standard Model is understood as the first term of an effective field theory, the anomaly-cancellation conditions have to be worked out and fulfilled order by order in the effective field-theory expansion. We bring attention to this issue and s