ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral and angular differential imaging with SPHERE/IFS. Assessing the performance of various PCA-based approaches to PSF subtraction

63   0   0.0 ( 0 )
 نشر من قبل Sven Kiefer
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Angular differential imaging (ADI) and spectral differential imaging (SDI) are commonly used for direct detection and characterisation of young, Jovian exoplanets in datasets obtained with the SPHERE/IFS instrument. We compare the performance of ADI, SDI, and three combinations of ADI and SDI to find which technique achieves the highest signal-to-noise ratio (S/N), and we analyse their performance as functions of integration time, field rotation, and wavelength range. We analyse SPHERE/IFS observations of three known exoplanets, namely Beta Pictoris b, 51 Eridani b, and HR 8799 e, with five differential imaging techniques. We split the datasets into subsets to vary each parameter before the data are processed with each technique. The differential imaging techniques are applied using principal component analysis (PCA). The tests show that a combination of SDI and ADI consistently achieves better results than ADI alone, and using SDI and ADI simultaneously (combined differential imaging; CODI) achieved the best results. The integration time test shows that targets with a separation larger than 0.24 arcsec observed with an integration time of more than 10$^3$s were photon-noise limited. Field rotation shows a strong correlation with S/N for field rotations up to 1 full width at half maximum (FWHM), after which no significant increase in S/N with field rotation is observed. Wavelength range variation shows a general increase in S/N for broader wavelength ranges, but no clear correlation is seen. Spectral information is essential to boost S/N compared to regular ADI. Our results suggest that CODI should be the preferred processing technique to search for new exoplanets with SPHERE/IFS. To optimise direct-imaging observations, the field rotation should exceed 1 FWHM to detect exoplanets at small separations.



قيم البحث

اقرأ أيضاً

Until now, just a few extrasolar planets (~30 out of 860) have been found through the direct imaging method. This number should greatly improve when the next generation of High Contrast Instruments like Gemini Planet Imager (GPI) at Gemini South Tele scope or SPHERE at VLT will became operative at the end of this year. In particular, the Integral Field Spectrograph (IFS), one of the SPHERE subsystems, should allow a first characterization of the spectral type of the found extrasolar planets. Here we present the results of the last performance tests that we have done on the IFS instrument at the Institut de Planetologie et dAstrophysique de Grenoble (IPAG) in condition as similar as possible to the ones that we will find at the telescope. We have found that we should be able to reach contrast down to 5x10$^{-7}$ and make astrometry at sub-mas level with the instrument in the actual conditions. A number of critical issues have been identified. The resolution of these problems could allow to further improve the performance of the instrument.
The Gemini Planet Imager (GPI) is a high-contrast imaging instrument designed to directly image and characterize exoplanets. GPI is currently undergoing several upgrades to improve performance. In this paper, we discuss the upgrades to the GPI IFS. T his primarily focuses on the design and performance improvements of new prisms and filters. This includes an improved high-resolution prism which will provide more evenly dispersed spectra across y, J, H and K-bands. Additionally, we discuss the design and implementation of a new low-resolution mode and prism which allow for imaging of all four bands (y, J, H and K-bands) simultaneously at R=10. We explore the possibility of using a multiband filter which would block the light between the four spectral bands. We discuss possible performance improvements from the multiband filter, if implemented. Finally we explore the possibility of making small changes to the optical design to improve the IFSs performance near the edge of the field of view.
Young giant exoplanets emit infrared radiation that can be linearly polarized up to several percent. This linear polarization can trace: 1) the presence of atmospheric cloud and haze layers, 2) spatial structure, e.g. cloud bands and rotational flatt ening, 3) the spin axis orientation and 4) particle sizes and cloud top pressure. We introduce a novel high-contrast imaging scheme that combines angular differential imaging (ADI) and accurate near-infrared polarimetry to characterize self-luminous giant exoplanets. We implemented this technique at VLT/SPHERE-IRDIS and developed the corresponding observing strategies, the polarization calibration and the data-reduction approaches. By combining ADI and polarimetry we can characterize planets that can be directly imaged with a very high signal-to-noise ratio. We use the IRDIS pupil-tracking mode and combine ADI and principal component analysis to reduce speckle noise. We take advantage of IRDIS dual-beam polarimetric mode to eliminate differential effects that severely limit the polarimetric sensitivity (flat-fielding errors, differential aberrations and seeing), and thus further suppress speckle noise. To correct for instrumental polarization effects, we apply a detailed Mueller matrix model that describes the telescope and instrument and that has an absolute polarimetric accuracy $leq0.1%$. Using this technique we have observed the planets of HR 8799 and the (sub-stellar) companion PZ Tel B. Unfortunately, we do not detect a polarization signal in a first analysis. We estimate preliminary $1sigma$ upper limits on the degree of linear polarization of $sim1%$ and $sim0.1%$ for the planets of HR 8799 and PZ Tel B, respectively. The achieved sub-percent sensitivity and accuracy show that our technique has great promise for characterizing exoplanets through direct-imaging polarimetry.
134 - D. Mesa , R. Gratton , A.Berton 2011
Aims. We present simulations of the perfomances of the future SPHERE IFS instrument designed for imaging extrasolar planets in the near infrared (Y, J, and H bands). Methods. We used the IDL package code for adaptive optics simulation (CAOS) to prepa re a series of input point spread functions (PSF). These feed an IDL tool (CSP) that we designed to simulate the datacube resulting from the SPHERE IFS. We performed simulations under different conditions to evaluate the contrast that IFS will be able to reach and to verify the impact of physical propagation within the limits of the near field of the aperture approximation (i.e. Fresnel propagation). We then performed a series of simulations containing planet images to test the capability of our instrument to correctly classify the found objects. To this purpose we developed a separated IDL tool. Results. We found that using the SPHERE IFS instrument and appropriate analysis techniques, such as multiple spectral differential imaging (MDI), spectral deconvolution (SD), and angular differential imaging (ADI), we should be able to image companion objects down to a luminosity contrast of ? 10-7 with respect to the central star in favorable cases. Spectral deconvolution resulted in the most effective method for reducing the speckle noise. We were then able to find most of the simulated planets (more than 90% with the Y-J-mode and more than the 95% with the Y-H-mode) for contrasts down to 3 times 10-7 and separations between 0.3 and 1.0 arcsec. The spectral classification is accurate but seems to be more precise for late T-type spectra than for earlier spectral types. A possible degeneracy between early L-type companion objects and field objects (flat spectra) is highlighted. The spectral classification seems to work better using the Y-H-mode than with the Y-J-mode.
Despite promising astrometric signals, to date there has been no success in direct imaging of a hypothesized third member of the Sirius system. Using the Clio instrument and MagAO adaptive optics system on the Magellan Clay 6.5 m telescope, we have o btained extensive imagery of Sirius through a vector apodizing phase plate (vAPP) coronagraph in a narrowband filter at 3.9 microns. The vAPP coronagraph and MagAO allow us to be sensitive to planets much less massive than the limits set by previous non-detections. However, analysis of these data presents challenges due to the targets brightness and unique characteristics of the instrument. We present a comparison of dimensionality reduction techniques to construct background illumination maps for the whole detector using the areas of the detector that are not dominated by starlight. Additionally, we describe a procedure for sub-pixel alignment of vAPP data using a physical-optics-based model of the coronagraphic PSF.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا